Solitary waves in a one-dimensional chain of atoms {q(j)}(j is an element of Z) are investigated. The potential energy is required to be monotone and grow super-quadratically. The existence of solitary waves with a prescribed asymptotic strain is shown under certain assumptions on the asymptotic strain and the wave speed. It is demonstrated that the invariance of the equations allows one to transform a system with nonconvex potential energy density to the situation under consideration.