CMOS design near the limit of scaling

被引:261
作者
Taur, Y [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1147/rd.462.0213
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Beginning with a brief review of CMOS scaling trends from 1 mum to 0.1 mum, this paper examines the fundamental factors that will ultimately limit CMOS scaling and considers the design issues near the limit of scaling. The fundamental limiting factors are electron thermal energy, tunneling leakage through gate oxide, and 2D electrostatic scale length. Both the standby power and the active power of a processor chip will increase precipitously below the 0.1-mum or 100-nm technology generation. To extend CMOS scaling to the shortest channel length possible while still gaining significant performance benefit, an optimized, vertically and laterally nonuniform doping design (superhalo) is presented. It is projected that room-temperature CMOS will be scaled to 20-nm channel length with the superhalo profile. Low-temperature CMOS allows additional design space to further extend CMOS scaling to near 10 nm.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 18 条
[1]   DESIGN OF ION-IMPLANTED MOSFETS WITH VERY SMALL PHYSICAL DIMENSIONS [J].
DENNARD, RH ;
GAENSSLEN, FH ;
YU, HN ;
RIDEOUT, VL ;
BASSOUS, E ;
LEBLANC, AR .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1974, SC 9 (05) :256-268
[2]   Generalized scale length for two-dimensional effects in MOSFET's [J].
Frank, DJ ;
Taur, Y ;
Wong, HSP .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (10) :385-387
[3]   Device scaling limits of Si MOSFETs and their application dependencies [J].
Frank, DJ ;
Dennard, RH ;
Nowak, E ;
Solomon, PM ;
Taur, Y ;
Wong, HSP .
PROCEEDINGS OF THE IEEE, 2001, 89 (03) :259-288
[4]  
FRANK DJ, 1999, S VLSI TECHN, P169
[5]   VERY SMALL MOSFETS FOR LOW-TEMPERATURE OPERATION [J].
GAENSSLEN, FH ;
RIDEOUT, VL ;
WALKER, EJ ;
WALKER, JJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1977, 24 (03) :218-229
[6]   MONTE-CARLO ANALYSIS OF SEMICONDUCTOR-DEVICES - THE DAMOCLES PROGRAM [J].
LAUX, SE ;
FISCHETTI, MV ;
FRANK, DJ .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1990, 34 (04) :466-494
[7]   Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's [J].
Lo, SH ;
Buchanan, DA ;
Taur, Y ;
Wang, W .
IEEE ELECTRON DEVICE LETTERS, 1997, 18 (05) :209-211
[8]   Modeling of 10-nm-scale ballistic MOSFET's [J].
Naveh, Y ;
Likharev, KK .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (05) :242-244
[9]  
NGUYEN TN, 1984, THESIS STANDORD U CA
[10]  
TAKAGI S, 1998, IEDM, P398