Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs

被引:75
作者
Traub, Linton M.
Lukacs, Gergely L.
机构
[1] Univ Pittsburgh, Sch Med, Dept Cell Biol & Physiol, Pittsburgh, PA 15261 USA
[2] Univ Toronto, Hosp Sick Children, Res Inst, Program Cell & Lung Biol, Toronto, ON M5G 1X8, Canada
[3] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON M5G 1X8, Canada
关键词
clathrin; cargo sorting; ubiquitin; adaptor; CLASP;
D O I
10.1242/jcs.03385
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
引用
收藏
页码:543 / 553
页数:11
相关论文
共 164 条
[1]   Ubiquitylation of ion channels [J].
Abriel, H ;
Staub, O .
PHYSIOLOGY, 2005, 20 :398-407
[2]   The yeast epsin Ent1 is recruited to membranes through multiple independent interactions [J].
Aguilar, RC ;
Watson, HA ;
Wendland, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10737-10743
[3]   Mechanism and function of deubiquitinating enzymes [J].
Amerik, AY ;
Hochstrasser, M .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1695 (1-3) :189-207
[4]   Molecular basis of oligoubiquitin-dependent internalization of membrane proteins in mammalian cells [J].
Barriere, H ;
Nemes, C ;
Lechardeur, D ;
Khan-Mohammad, M ;
Fruh, K ;
Lukacs, GL .
TRAFFIC, 2006, 7 (03) :282-297
[5]   Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins [J].
Bartee, E ;
Mansouri, M ;
Nerenberg, BTH ;
Gouveia, K ;
Früh, K .
JOURNAL OF VIROLOGY, 2004, 78 (03) :1109-1120
[6]   The tyrosine kinase substrate eps15 is constitutively associated with the plasma membrane adaptor AP-2 [J].
Benmerah, A ;
Gagnon, J ;
Begue, B ;
Megarbane, B ;
DautryVarsat, A ;
CerfBensussan, N .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1831-1838
[7]   Signals for sorting of transmembrane proteins to endosomes and lysosomes [J].
Bonifacino, JS ;
Traub, LM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :395-447
[8]   Molecular structures of coat and coat-associated proteins: function follows form [J].
Brett, Tom J. ;
Traub, Linton M. .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (04) :395-406
[9]   RECEPTOR-MEDIATED ENDOCYTOSIS - INSIGHTS FROM THE LIPOPROTEIN RECEPTOR SYSTEM [J].
BROWN, MS ;
GOLDSTEIN, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (07) :3330-3337
[10]   Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool [J].
Butterworth, MB ;
Edinger, RS ;
Johnson, JP ;
Frizzell, RA .
JOURNAL OF GENERAL PHYSIOLOGY, 2005, 125 (01) :81-101