Posterior consistency of Gaussian process prior for nonparametric binary regression

被引:93
作者
Ghosal, Subhashis
Roy, Anindya
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
binary regression; Gaussian process; Karhunen-Loeve expansion; maximal inequality; posterior consistency; reproducing kernel Hilbert space;
D O I
10.1214/009053606000000795
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider binary observations whose response probability is an unknown smooth function of a set of covariates. Suppose that a prior on the response probability function is induced by a Gaussian process mapped to the unit interval through a link function. In this paper we study consistency of the resulting posterior distribution. If the covariance kernel has derivatives up to a desired order and the bandwidth parameter of the kernel is allowed to take arbitrarily small values, we show that the posterior distribution is consistent in the L-1-distance. As an auxiliary result to our proofs, we show that, under certain conditions, a Gaussian process assigns positive probabilities to the uniform neighborhoods of a continuous function. This result may be of independent interest in the literature for small ball probabilities of Gaussian processes.
引用
收藏
页码:2413 / 2429
页数:17
相关论文
共 13 条
[1]  
[Anonymous], INTRO CONTINUITY EXT
[2]  
Choi T., 2004, POSTERIOR CONSISTENC
[3]   Bayesian estimation of the spectral density of a time series [J].
Choudhuri, N ;
Ghosal, S ;
Roy, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) :1050-1059
[4]  
CHOUDHURI N, 2007, IN PRESS NONPARAMETR, V4
[5]  
Cramer H., 1967, STATIONARY RELATED S, pxii+348, 0217860
[6]   Convergence rates of posterior distributions [J].
Ghosal, S ;
Ghosh, JK ;
Van der Vaart, AW .
ANNALS OF STATISTICS, 2000, 28 (02) :500-531
[7]  
Ghosal S, 1999, ANN STAT, V27, P143
[10]  
LEONARD T, 1978, J ROY STAT SOC B MET, V40, P113