At cryogenic temperatures magnetic properties of ferrites change significantly from their values at room temperature, which has been the main regime for most device applications. Recently, microwave ferrite devices with superconducting microstrip circuits have been demonstrated at a temperature of 77 K with virtually no electrical conduction losses. Conventional ferrimagnetic garnet and spinel compositions, however, are not generally optimized for low temperatures and may require chemical redesign if the full potential of these devices is to be realized. Saturation magnetizations increase according to the Brillouin-Weiss function dependence that is characteristic of all ferromagnetic materials. Increased magnetocrystalline anisotropy and magnetostriction can have large effects on hysteresis loop squareness and coercive fields that are essential for stable phase shift and efficient switching. Rare-earth impurities and other ions with short spin-lattice relaxation times can cause increased microwave losses. In this article, the basic magnetochemistry pertaining to ferrites will be examined for adaptation of ferrite technology to cryogenic environments. (C) 1997 American Institute of Physics.