Fourier coefficients of modular forms on G2

被引:72
作者
Gan, WT [1 ]
Gross, B
Savin, G
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
D O I
10.1215/S0012-7094-02-11514-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a theory of Fourier coefficients for modular forms on the split exceptional group G(2) over Q.
引用
收藏
页码:105 / 169
页数:65
相关论文
共 18 条
[1]  
[Anonymous], PUB MATH IHES
[2]   ON THE STRUCTURE OF PARABOLIC SUBGROUPS [J].
AZAD, H ;
BARRY, M ;
SEITZ, G .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) :551-562
[3]  
Borel A., 1977, P S PURE MATH 1, V33, P189
[4]   CANONICAL EXTENSIONS OF HARISH-CHANDRA MODULES TO REPRESENTATIONS OF G [J].
CASSELMAN, W .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1989, 41 (03) :385-438
[5]   SUMS INVOLVING VALUES AT NEGATIVE INTEGERS OF L-FUNCTIONS OF QUADRATIC CHARACTERS [J].
COHEN, H .
MATHEMATISCHE ANNALEN, 1975, 217 (03) :271-285
[6]  
Gan WT, 2000, J REINE ANGEW MATH, V528, P149
[7]   An automorphic theta module for quaternionic exceptional groups [J].
Gan, WT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (04) :737-756
[8]  
Gross B.H, 1998, GALOIS REPRESENTATIO, V254, P223, DOI [10.1017/CBO9780511662010.006, DOI 10.1017/CBO9780511662010.006]
[9]   Commutative subrings of certain non-associative rings [J].
Gross, BH ;
Gan, WT .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :265-283
[10]   Groups over Z [J].
Gross, BH .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :263-279