An automorphic theta module for quaternionic exceptional groups

被引:12
作者
Gan, WT [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 04期
关键词
D O I
10.4153/CJM-2000-031-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an automorphic realization of the global minimal representation of quaternionic exceptional groups, using the theory of Eisenstein series, and use this for the study of theta correspondences.
引用
收藏
页码:737 / 756
页数:20
相关论文
共 17 条
[1]   A tower of theta correspondences for G(2) [J].
Ginzburg, D ;
Rallis, S ;
Soudry, D .
DUKE MATHEMATICAL JOURNAL, 1997, 88 (03) :537-624
[2]   On the automorphic theta representation for simply laced groups [J].
Ginzburg, D ;
Rallis, S ;
Soudry, D .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :61-116
[3]  
Gross BH, 1996, J REINE ANGEW MATH, V481, P73
[4]   Motives with Galois group of type G2:: an exceptional theta-correspondence [J].
Gross, BH ;
Savin, G .
COMPOSITIO MATHEMATICA, 1998, 114 (02) :153-217
[5]  
GROSS BH, 1999, IN PRESS MATH ANN
[6]   Two reductive dual pairs in groups of type E [J].
Li, JS .
MANUSCRIPTA MATHEMATICA, 1996, 91 (02) :163-177
[7]  
LI JS, 1998, DESCRIPTION DISCRETE
[8]   Exceptional Theta-correspondences .1. [J].
Magaard, K ;
Savin, G .
COMPOSITIO MATHEMATICA, 1997, 107 (01) :89-123
[9]  
MOEGLIN C, 1996, SPECTRAL DECOMPOSITI
[10]  
RUMELHART K, 1997, AUTOMORPHIC THETA MO