Proposal for generating and detecting multi-qubit GHZ states in circuit QED

被引:63
作者
Bishop, Lev S. [1 ,2 ]
Tornberg, L. [3 ]
Price, D. [1 ,2 ]
Ginossar, E. [1 ,2 ]
Nunnenkamp, A. [1 ,2 ]
Houck, A. A. [4 ]
Gambetta, J. M. [5 ,6 ]
Koch, Jens [1 ,2 ]
Johansson, G. [3 ]
Girvin, S. M. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[3] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden
[4] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[5] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[6] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
基金
瑞典研究理事会;
关键词
HORNE-ZEILINGER ENTANGLEMENT; SUPERCONDUCTING QUBITS; QUANTUM ENTANGLEMENT; LOCAL THEORIES; TOMOGRAPHY; PHOTON; CAVITY;
D O I
10.1088/1367-2630/11/7/073040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose methods for the preparation and entanglement detection of multi-qubit Greenberger-Horne-Zeilinger (GHZ) states in circuit quantum electrodynamics. Using quantum trajectory simulations appropriate for the situation of a weak continuous measurement, we show that the joint dispersive readout of several qubits can be utilized for the probabilistic production of high-fidelity GHZ states. When employing a nonlinear filter on the recorded homodyne signal, the selected states are found to exhibit values of the Bell-Mermin operator exceeding 2 under realistic conditions. We discuss the potential of the dispersive readout to demonstrate a violation of the Mermin bound, and present a measurement scheme avoiding the necessity for full detector tomography.
引用
收藏
页数:16
相关论文
共 46 条
[21]  
Greenberger D.M., 1989, GOING BELLS THEOREM
[22]   Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED [J].
Helmer, Ferdinand ;
Marquardt, Florian .
PHYSICAL REVIEW A, 2009, 79 (05)
[23]   Controlling the spontaneous emission of a superconducting transmon qubit [J].
Houck, A. A. ;
Schreier, J. A. ;
Johnson, B. R. ;
Chow, J. M. ;
Koch, Jens ;
Gambetta, J. M. ;
Schuster, D. I. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[24]   Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement [J].
Hutchison, Chantal L. ;
Gambetta, J. M. ;
Blais, Alexandre ;
Wilhelm, F. K. .
CANADIAN JOURNAL OF PHYSICS, 2009, 87 (03) :225-231
[25]   Macroscopic Greenberger-Horne-Zeilinger and W states in flux qubits [J].
Kim, Mun Dae ;
Cho, Sam Young .
PHYSICAL REVIEW B, 2008, 77 (10)
[26]   Analysis of Bell inequality violation in superconducting phase qubits [J].
Kofman, Abraham G. ;
Korotkov, Alexander N. .
PHYSICAL REVIEW B, 2008, 77 (10)
[27]   Complete characterization of arbitrary quantum measurement processes [J].
Luis, A ;
Sánchez-Soto, LL .
PHYSICAL REVIEW LETTERS, 1999, 83 (18) :3573-3576
[28]  
Lundeen JS, 2009, NAT PHYS, V5, P27, DOI [10.1038/nphys1133, 10.1038/NPHYS1133]
[29]   Coupling superconducting qubits via a cavity bus [J].
Majer, J. ;
Chow, J. M. ;
Gambetta, J. M. ;
Koch, Jens ;
Johnson, B. R. ;
Schreier, J. A. ;
Frunzio, L. ;
Schuster, D. I. ;
Houck, A. A. ;
Wallraff, A. ;
Blais, A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2007, 449 (7161) :443-447
[30]   Quantum interference of photon pairs from two remote trapped atomic ions [J].
Maunz, P. ;
Moehring, D. L. ;
Olmschenk, S. ;
Younge, K. C. ;
Matsukevich, D. N. ;
Monroe, C. .
NATURE PHYSICS, 2007, 3 (08) :538-541