Autonomous microfluidic capillary system

被引:340
作者
Juncker, D
Schmid, H
Drechsler, U
Wolf, H
Wolf, M
Michel, B
de Rooij, N
Delamarche, E [1 ]
机构
[1] IBM Res Corp, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[2] Univ Neuchatel, Inst Microtech, CH-2000 Neuchatel, Switzerland
[3] Univ Kliniken Basel, Dept Forsch, CH-4031 Basel, Switzerland
关键词
D O I
10.1021/ac0261449
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The transport of minute amounts of liquids using microfluidic systems has opened avenues for higher throughput and parallelization of miniaturized bio/chemical processes combined with a great economy of reagents. In this report, we present a microfluidic capillary system (CS) that autonomously transports aliquots of different liquids in sequence: liquids pipetted into the service port of the CS flow unidirectionally through the various sections of the CS, which comprises a 15-pL reaction chamber, into the capillary pump. A CS can thus be operated by simply delivering the different samples to its service port. The liquid transport concept presented here is advantageous because the pumping and valving functions are integrated into the device by means of capillary phenomena, and it therefore does not require any external power supply or control device. Thus, arrays of CSs can easily be formed by cloning a functional CS. Alternatively, the flow of liquids in CSs can also be interactively tuned if desired by (i) forcing the evaporating of liquid out of the capillary pumps and (ii) by contacting a secondary, removable capillary pump to the embedded ones. We illustrate the possibilities of CSs by conducting a surface immunoassay for a cardiac marker, within 25 min, on an area of 100 x 100 mum(2), using 16 sequential filling steps.
引用
收藏
页码:6139 / 6144
页数:6
相关论文
共 32 条
  • [1] Functional hydrogel structures for autonomous flow control inside microfluidic channels
    Beebe, DJ
    Moore, JS
    Bauer, JM
    Yu, Q
    Liu, RH
    Devadoss, C
    Jo, BH
    [J]. NATURE, 2000, 404 (6778) : 588 - +
  • [2] Micromosaic immunoassays
    Bernard, A
    Michel, B
    Delamarche, E
    [J]. ANALYTICAL CHEMISTRY, 2001, 73 (01) : 8 - 12
  • [3] BUECHLER KF, 2001, MICROTOTAL ANAL SYST, P42
  • [4] An integrated nanoliter DNA analysis device
    Burns, MA
    Johnson, BN
    Brahmasandra, SN
    Handique, K
    Webster, JR
    Krishnan, M
    Sammarco, TS
    Man, PM
    Jones, D
    Heldsinger, D
    Mastrangelo, CH
    Burke, DT
    [J]. SCIENCE, 1998, 282 (5388) : 484 - 487
  • [5] Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems
    Chiu, DT
    Jeon, NL
    Huang, S
    Kane, RS
    Wargo, CJ
    Choi, IS
    Ingber, DE
    Whitesides, GM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) : 2408 - 2413
  • [6] Past drop movements resulting from the phase change on a gradient surface
    Daniel, S
    Chaudhury, MK
    Chen, JC
    [J]. SCIENCE, 2001, 291 (5504) : 633 - 636
  • [7] WETTING - STATICS AND DYNAMICS
    DEGENNES, PG
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 827 - 863
  • [8] Microfluidic networks for chemical patterning of substrate: Design and application to bioassays
    Delamarche, E
    Bernard, A
    Schmid, H
    Bietsch, A
    Michel, B
    Biebuyck, H
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (03) : 500 - 508
  • [9] Patterned delivery of immunoglobulins to surfaces using microfluidic networks
    Delamarche, E
    Bernard, A
    Schmid, H
    Michel, B
    Biebuyck, H
    [J]. SCIENCE, 1997, 276 (5313) : 779 - 781
  • [10] Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays
    Dodge, A
    Fluri, K
    Verpoorte, E
    de Rooij, NF
    [J]. ANALYTICAL CHEMISTRY, 2001, 73 (14) : 3400 - 3409