Geometry of lipid vesicle adhesion

被引:34
作者
Capovilla, R
Guven, J
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.041604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The adhesion of a lipid membrane vesicle to a fixed substrate is examined from a geometrical point of view. This vesicle is described by the Helfrich Hamiltonian quadratic in the mean curvature; it interacts by contact with the substrate, with an interaction energy proportional to the area of contact. We identify the constraints on the geometry at the boundary of the shared surface. The result is interpreted in terms of the balance of the force normal to this boundary. No assumptions are made either on the symmetry of the vesicle or on that of the substrate. The strong bonding limit as well as the effect of curvature asymmetry on the boundary are discussed.
引用
收藏
页数:6
相关论文
共 26 条
[11]   IS IT POSSIBLE TO CREATE A UNIVERSE IN THE LABORATORY BY QUANTUM TUNNELING [J].
FARHI, E ;
GUTH, AH ;
GUVEN, J .
NUCLEAR PHYSICS B, 1990, 339 (02) :417-490
[12]  
Goetz R, 1996, J PHYS II, V6, P215, DOI 10.1051/jp2:1996178
[13]   ELASTIC PROPERTIES OF LIPID BILAYERS - THEORY AND POSSIBLE EXPERIMENTS [J].
HELFRICH, W .
ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1973, C 28 (11-1) :693-703
[14]  
HELFRICH W, 1995, HDB BIOL PHYSICS, V1
[15]   GRAVITY-INDUCED SHAPE TRANSFORMATIONS OF VESICLES [J].
KRAUS, M ;
SEIFERT, U ;
LIPOWSKY, R .
EUROPHYSICS LETTERS, 1995, 32 (05) :431-436
[16]  
Lipowsky R., 1995, P521
[17]  
Peliti L, 1996, FLUCTUATING GEOMETRIES IN STATISTICAL MECHANICS AND FIELD THEORY, P195
[18]   Adhesion by curvature of lipid tubules [J].
Rosso, R ;
Virga, EG .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) :359-367
[19]   ADHESION OF VESICLES [J].
SEIFERT, U ;
LIPOWSKY, R .
PHYSICAL REVIEW A, 1990, 42 (08) :4768-4771
[20]  
Seifert U., 1995, P403