Error-correcting codes for adiabatic quantum computation

被引:105
作者
Jordan, Stephen P.
Farhi, Edward
Shor, Peter W.
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevA.74.052322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, there has been growing interest in using adiabatic quantum computation as an architecture for experimentally realizable quantum computers. One of the reasons for this is the idea that the energy gap should provide some inherent resistance to noise. It is now known that universal quantum computation can be achieved adiabatically using two-local Hamiltonians. The energy gap in these Hamiltonians scales as an inverse polynomial in the number of quantum gates being simulated. Here we present stabilizer codes which can be used to produce a constant energy gap against one-local and two-local noise. The corresponding fault-tolerant universal Hamiltonians are four-local and six-local, respectively, which are the optimal result achievable within this framework.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis -: art. no. 042317 [J].
Åberg, J ;
Kult, D ;
Sjöqvist, E .
PHYSICAL REVIEW A, 2005, 72 (04)
[2]   Coherence-preserving quantum bits [J].
Bacon, D ;
Brown, KR ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2001, 87 (24) :247902-247902
[3]   Robustness of adiabatic quantum computation [J].
Childs, AM ;
Farhi, E ;
Preskill, J .
PHYSICAL REVIEW A, 2002, 65 (01) :123221-1232210
[4]  
FARHI E, QUANTPH0001106
[5]   QUANTUM-MECHANICAL COMPUTERS [J].
FEYNMAN, RP .
FOUNDATIONS OF PHYSICS, 1986, 16 (06) :507-531
[6]  
Gottesman D., 1997, THESIS CALTECH PASAD
[7]  
HARAONOV D, 2004, P 45 ANN S FDN COMP, P42
[8]  
JANSEN S, QUANTPH0603175
[9]  
JOYE A, MATHPH0608059
[10]  
KAMINSKY WM, 2003, QUANTUM COMPUTING QU