Microwave triggered metal enhanced chemiluminescence: Quantitative protein determination

被引:30
作者
Previte, Michael J. R.
Aslan, Kadir
Malyn, Stuart N.
Geddes, Chris D.
机构
[1] Univ Maryland, Inst Biotechnol, Ctr Med Biotechnol, Lab Adv Med Plasmon,Inst Fluorescence, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Ctr Med Biotechnol, Ctr Fluorescence Spect, Baltimore, MD 21201 USA
关键词
D O I
10.1021/ac061161+
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We present a new technology that offers a faster alternative to the chemiluminescence-based detection that is used in protein assay platforms today. By combining the use of silver nanostructures with chemiluminescent species, a technique that our laboratories have recently shown can enhance the system photon flux over 50-fold, with the use of low-power microwave heating to additionally accelerate, in essence "trigger", chemiluminescence-based reactions, then both ultrafast and ultrabright chemiluminescence assays can be realized. In addition, the preferential heating of the nanostructures by microwaves affords for microwave triggered metal enhanced chemiluminescence (MT-MEC) to be localized in proximity to the silvered surfaces, alleviating unwanted emission from the distal solution. To demonstrate MT-MEC, we have constructed a model assay sensing platform on both silvered and glass surfaces, where comparison with the identical glass substrate-based assay serves to confirm the significant benefits of using silver nanostructures for metal-enhanced chemiluminescence. Our new model assay technology can detect femtomoles of biotinylated BSA in less than 2 min and can indeed be modified to both detect and quantify a great many other biomolecules as well. As compared to traditional western blot approaches, MT-MEC offers protein quantification, high-sensitivity detection combined with ultrafast assay times, i.e., < 2 min.
引用
收藏
页码:8020 / 8027
页数:8
相关论文
共 56 条
[1]   ULTRAFAST PROTEIN DETERMINATIONS USING MICROWAVE ENHANCEMENT [J].
AKINS, RE ;
TUAN, RS .
MOLECULAR BIOTECHNOLOGY, 1995, 4 (01) :17-24
[2]   Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays [J].
Aslan, K ;
Geddes, CD .
ANALYTICAL CHEMISTRY, 2005, 77 (24) :8057-8067
[3]   Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: Metal-enhanced fluorescence sensing [J].
Aslan, K ;
Lakowicz, JR ;
Szmacinski, H ;
Geddes, CD .
JOURNAL OF FLUORESCENCE, 2005, 15 (01) :37-40
[4]   Microwave-accelerated Metal-enhanced Fluorescence (MAMEF): Application to ultra fast and sensitive clinical assays [J].
Aslan, K ;
Geddes, CD .
JOURNAL OF FLUORESCENCE, 2006, 16 (01) :3-8
[5]   Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date [J].
Aslan, K ;
Lakowicz, JR ;
Geddes, CD .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 382 (04) :926-933
[6]   Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence [J].
Aslan, K ;
Leonenko, Z ;
Lakowicz, JR ;
Geddes, CD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3157-3162
[7]   Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons [J].
Aslan, K ;
Leonenko, Z ;
Lakowicz, JR ;
Geddes, CD .
JOURNAL OF FLUORESCENCE, 2005, 15 (05) :643-654
[8]   Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing [J].
Aslan, K ;
Holley, P ;
Davies, L ;
Lakowicz, JR ;
Geddes, CD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (34) :12115-12121
[9]   Metal-enhanced fluorescence from plastic substrates [J].
Aslan, K ;
Badugu, R ;
Lakowicz, JR ;
Geddes, CD .
JOURNAL OF FLUORESCENCE, 2005, 15 (02) :99-104
[10]  
ASLAN K, 2006, J IMMUNOL METHODS