Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells

被引:187
作者
Rahimi, N
Dayanir, V
Lashkari, K
机构
[1] Boston Univ, Sch Med, Dept Ophthalmol, Boston, MA 02118 USA
[2] Boston Univ, Sch Med, Dept Biochem, Boston, MA 02118 USA
[3] Harvard Univ, Sch Med, Schepens Eye Res Inst, Boston, MA 02114 USA
关键词
D O I
10.1074/jbc.M000528200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vascular endothelial growth factor (VEGF) provokes angiogenesis in vivo and stimulates growth and differentiation of endothelial cells in vitro. Although VEGF receptor-1 (VEGFR-1) and VEGFR-2 are known to be high affinity receptors for VEGF, it is not clear which of the VEGFRs are responsible for the transmission of the diverse biological responses of VEGF. For this purpose we have constructed a chimeric receptor for VEGFR-1 (CTR) and VEGFR-2 (CKR) in which the extracellular domain of each receptor was replaced with the extracellular domain of human colony-stimulating factor-1 receptor (CSF-1R), and these receptors were expressed in pig aortic endothelial (PAE) cells. We show that CHR individually expressed in PAE cells is readily tyrosine-phosphorylated in vivo, autophosphorylated in vitro, and stimulates cell proliferation in a CSF-1-dependent manner. In contrast, CTR individually expressed in PAE cells showed no significant in vivo, in vitro tyrosine phosphorylation and cell growth in response to CSF-1 stimulation. The kinase activity of CKR was essential for its biological activity, since mutation of lysine 866 to arginine abolished its in vivo, in vitro tyrosine phosphorylation and mitogenic signals. Remarkably, activation of CTR repressed CKR-mediated mitogen-activate protein kinase activation and cell proliferation. Similar effects were observed for VEGFR-2 co-expressed with VEGFR-1. Collectively, these findings demonstrate that VEGFR-8 activation plays a positive role in angiogenesis by promoting endothelial cell proliferation In contrast, activation of VEGFR-1 plays a stationary role in angiogenesis by antagonizing VEGFR-2 responses.
引用
收藏
页码:16986 / 16992
页数:7
相关论文
共 34 条
[1]   ACTIVATION OF MAP KINASE KINASE IS NECESSARY AND SUFFICIENT FOR PC12 DIFFERENTIATION AND FOR TRANSFORMATION OF NIH 3T3 CELLS [J].
COWLEY, S ;
PATERSON, H ;
KEMP, P ;
MARSHALL, CJ .
CELL, 1994, 77 (06) :841-852
[2]   THE FMS-LIKE TYROSINE KINASE, A RECEPTOR FOR VASCULAR ENDOTHELIAL GROWTH-FACTOR [J].
DEVRIES, C ;
ESCOBEDO, JA ;
UENO, H ;
HOUCK, K ;
FERRARA, N ;
WILLIAMS, LT .
SCIENCE, 1992, 255 (5047) :989-991
[3]   Solution structure of the heparin-binding domain of vascular endothelial growth factor [J].
Fairbrother, WJ ;
Champe, MA ;
Christinger, HW ;
Keyt, BA ;
Starovasnik, MA .
STRUCTURE WITH FOLDING & DESIGN, 1998, 6 (05) :637-648
[4]   Blood vessel formation: What is its molecular basis? [J].
Folkman, J ;
DAmore, PA .
CELL, 1996, 87 (07) :1153-1155
[5]   ROLE OF THE FLT-1 RECEPTOR TYROSINE KINASE IN REGULATING THE ASSEMBLY OF VASCULAR ENDOTHELIUM [J].
FONG, GH ;
ROSSANT, J ;
GERTSENSTEIN, M ;
BREITMAN, ML .
NATURE, 1995, 376 (6535) :66-70
[6]  
Fong GH, 1999, DEVELOPMENT, V126, P3015
[7]   ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling [J].
GrausPorta, D ;
Beerli, RR ;
Daly, JM ;
Hynes, NE .
EMBO JOURNAL, 1997, 16 (07) :1647-1655
[8]   Characterization of the VEGF binding site on the Flt-1 receptor [J].
Herley, MT ;
Yu, Y ;
Whitney, RG ;
Sato, JD .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 262 (03) :731-738
[9]   Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice [J].
Hiratsuka, S ;
Minowa, O ;
Kuno, J ;
Noda, T ;
Shibuya, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9349-9354
[10]   Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase [J].
Kan, M ;
Wu, XC ;
Wang, F ;
McKeehan, WL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (22) :15947-15952