Photon counting schemes and performance of non-deterministic nonlinear gates in linear optics

被引:3
作者
Bartlett, SD [1 ]
Diamanti, E [1 ]
Sanders, BC [1 ]
Yamamoto, Y [1 ]
机构
[1] Macquarie Univ, Dept Phys, N Ryde, NSW 2109, Australia
来源
FREE-SPACE LASER COMMUNICATION AND LASER IMAGING II | 2002年 / 4821卷
关键词
quantum computation; photodetector models; nonclassical light;
D O I
10.1117/12.451332
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The performance of nondeterministic nonlinear gates in linear optics relies on the photon counting scheme being employed and the efficiencies of the detectors in such schemes. We assess the performance of the nonlinear sign gate, which is a critical component of linear optical quantum computing, for two standard photon counting methods: the double detector array and the visible light photon counter. Our analysis shows that the double detector array is insufficient to provide the photon counting capability for effective nondeterministic nonlinear transformations, and we determine the gate fidelity for both photon counting methods as a function of detector efficiencies.
引用
收藏
页码:427 / 435
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]   Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting [J].
Bartlett, SD ;
Sanders, BC .
PHYSICAL REVIEW A, 2002, 65 (04) :5
[3]  
Buzek V., 1995, PROG OPTICS, V34, P1, DOI DOI 10.1016/S0079-6638(08)70324-X
[4]   SIMPLE QUANTUM COMPUTER [J].
CHUANG, IL ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1995, 52 (05) :3489-3496
[5]  
GLANCY S, 2002, IMPERFECT DETECTORS
[6]   Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J].
Gottesman, D ;
Chuang, IL .
NATURE, 1999, 402 (6760) :390-393
[7]   Multiphoton detection using visible light photon counter [J].
Kim, JS ;
Takeuchi, S ;
Yamamoto, Y ;
Hogue, HH .
APPLIED PHYSICS LETTERS, 1999, 74 (07) :902-904
[8]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[9]  
Knill E., 2000, THRESHOLDS LINEAR OP
[10]  
Kok P, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.033812