A simple SIS epidemic model with a backward bifurcation

被引:291
作者
van den Driessche, P [1 ]
Watmough, J [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
关键词
SIS epidemic model; multiple equilibria; backward bifurcation; nonlinear Volterra integral equation; distributed delay;
D O I
10.1007/s002850000032
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is shown that an SIS epidemic model with a non-constant contact rate may have multiple stable equilibria, a backward bifurcation and hysteresis. The consequences for disease control are discussed. The model is based on a Volterra integral equation and allows for a distributed infective period. The analysis includes both local and global stability of equilibria.
引用
收藏
页码:525 / 540
页数:16
相关论文
共 20 条
[1]  
ANDERSON R M, 1991
[2]   PERTURBATIONS OF NONLINEAR RENEWAL EQUATION [J].
BRAUER, F .
ADVANCES IN MATHEMATICS, 1976, 22 (01) :32-51
[3]  
COOKE K L, 1973, Mathematical Biosciences, V16, P75, DOI 10.1016/0025-5564(73)90046-1
[4]   Backwards bifurcations and catastrophe in simple models of fatal diseases [J].
Dushoff, J ;
Huang, WZ ;
Castillo-Chavez, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (03) :227-248
[5]   Incorporating immunological ideas in epidemiological models [J].
Dushoff, J .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 180 (03) :181-187
[6]   On the integral equation of renewal theory [J].
Feller, W .
ANNALS OF MATHEMATICAL STATISTICS, 1941, 12 :243-267
[7]   Backward bifurcation in epidemic control [J].
Hadeler, KP ;
VandenDriessche, P .
MATHEMATICAL BIOSCIENCES, 1997, 146 (01) :15-35
[8]   A CORE GROUP MODEL FOR DISEASE TRANSMISSION [J].
HADELER, KP ;
CASTILLOCHAVEZ, C .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :41-55
[9]  
Hethcote H.W., 1984, Lecture notes in biomathematics
[10]   AN EPIDEMIOLOGICAL MODEL WITH A DELAY AND A NONLINEAR INCIDENCE RATE [J].
HETHCOTE, HW ;
LEWIS, MA ;
VANDENDRIESSCHE, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :49-64