Global mapping of transposon location

被引:41
作者
Gabriel, Abram [1 ]
Dapprich, Johannes
Kunkel, Mark
Gresham, David
Pratt, Stephen C.
Dunham, Maitreya J.
机构
[1] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08855 USA
[2] Generat Biotech, Lawrenceville, NJ USA
[3] Lewis Sigler Inst, Princeton, NJ USA
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
来源
PLOS GENETICS | 2006年 / 2卷 / 12期
关键词
D O I
10.1371/journal.pgen.0020212
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transposable genetic elements are ubiquitous, yet their presence or absence at any given position within a genome can vary between individual cells, tissues, or strains. Transposable elements have profound impacts on host genomes by altering gene expression, assisting in genomic rearrangements, causing insertional mutations, and serving as sources of phenotypic variation. Characterizing a genome's full complement of transposons requires whole genome sequencing, precluding simple studies of the impact of transposition on interindividual variation. Here, we describe a global mapping approach for identifying transposon locations in any genome, using a combination of transposon-specific DNA extraction and microarray- based comparative hybridization analysis. We use this approach to map the repertoire of endogenous transposons in different laboratory strains of Saccharomyces cerevisiae and demonstrate that transposons are a source of extensive genomic variation. We also apply this method to mapping bacterial transposon insertion sites in a yeast genomic library. This unique whole genome view of transposon location will facilitate our exploration of transposon dynamics, as well as defining bases for individual differences and adaptive potential.
引用
收藏
页码:2026 / 2038
页数:13
相关论文
共 61 条
  • [1] Translocation and gross deletion breakpolints in human inherited disease and cancer I: Nucleotide composition and recomblination-assocliated motifs
    Abeysinghe, SS
    Chuzhanova, N
    Krawczak, M
    Ball, EV
    Cooper, DN
    [J]. HUMAN MUTATION, 2003, 22 (03) : 229 - 244
  • [2] Transposable element contributions to plant gene and genome evolution
    Bennetzen, JL
    [J]. PLANT MOLECULAR BIOLOGY, 2000, 42 (01) : 251 - 269
  • [3] Blanc VM, 2003, GENETICS, V165, P975
  • [4] Genetic dissection of transcriptional regulation in budding yeast
    Brem, RB
    Yvert, G
    Clinton, R
    Kruglyak, L
    [J]. SCIENCE, 2002, 296 (5568) : 752 - 755
  • [5] LARGE-SCALE ANALYSIS OF GENE-EXPRESSION, PROTEIN LOCALIZATION, AND GENE DISRUPTION SACCHAROMYCES-CEREVISIAE
    BURNS, N
    GRIMWADE, B
    ROSSMACDONALD, PB
    CHOI, EY
    FINBERG, K
    ROEDER, GS
    SNYDER, M
    [J]. GENES & DEVELOPMENT, 1994, 8 (09) : 1087 - 1105
  • [6] Targeting survival: Integration site selection by retroviruses and LTR-retrotransposons
    Bushman, FD
    [J]. CELL, 2003, 115 (02) : 135 - 138
  • [7] Tn7-based genome-wide random insertional mutagenesis of Candida glabrata
    Castaño, I
    Kaur, R
    Pan, SJ
    Cregg, R
    De Las Peñas, A
    Guo, NN
    Biery, MC
    Craig, NL
    Cormack, BP
    [J]. GENOME RESEARCH, 2003, 13 (05) : 905 - 915
  • [8] Microarray-based detection of Salmonella enterica serovar typhimurium transposon mutants that cannot survive in macrophages and mice
    Chan, K
    Kim, CC
    Falkow, S
    [J]. INFECTION AND IMMUNITY, 2005, 73 (09) : 5438 - 5449
  • [9] Finding functional features in Saccharomyces genomes by phylogenetic footprinting
    Cliften, P
    Sudarsanam, P
    Desikan, A
    Fulton, L
    Fulton, B
    Majors, J
    Waterston, R
    Cohen, BA
    Johnston, M
    [J]. SCIENCE, 2003, 301 (5629) : 71 - 76
  • [10] DAPPRICH J, 2006, IMMUNOBIOLOGY HUMAN, V2, P93