Violation of Bell's inequality in Josephson phase qubits

被引:307
作者
Ansmann, Markus [1 ]
Wang, H. [1 ]
Bialczak, Radoslaw C. [1 ]
Hofheinz, Max [1 ]
Lucero, Erik [1 ]
Neeley, M. [1 ]
O'Connell, A. D. [1 ]
Sank, D. [1 ]
Weides, M. [1 ]
Wenner, J. [1 ]
Cleland, A. N. [1 ]
Martinis, John M. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
SUPERCONDUCTING QUBITS; ENTANGLEMENT;
D O I
10.1038/nature08363
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The measurement process plays an awkward role in quantum mechanics, because measurement forces a system to 'choose' between possible outcomes in a fundamentally unpredictable manner. Therefore, hidden classical processes have been considered as possibly predetermining measurement outcomes while preserving their statistical distributions(1). However, a quantitative measure that can distinguish classically determined correlations from stronger quantum correlations exists in the form of the Bell inequalities, measurements of which provide strong experimental evidence that quantum mechanics provides a complete description(2-4). Here we demonstrate the violation of a Bell inequality in a solid-state system. We use a pair of Josephson phase qubits(5-7) acting as spin-1/2 particles, and show that the qubits can be entangled(8,9) and measured so as to violate the Clauser-Horne-Shimony-Holt (CHSH) version of the Bell inequality(10). We measure a Bell signal of 2.0732 +/- 0.0003, exceeding the maximum amplitude of 2 for a classical system by 244 standard deviations. In the experiment, we deterministically generate the entangled state, and measure both qubits in a single-shot manner, closing the detection loophole(11). Because the Bell inequality was designed to test for non-classical behaviour without assuming the applicability of quantum mechanics to the system in question, this experiment provides further strong evidence that a macroscopic electrical circuit is really a quantum system(7).
引用
收藏
页码:504 / 506
页数:3
相关论文
共 27 条
[1]  
[Anonymous], 2000, The Physical Implementation of Quantum Computation
[2]   EXPERIMENTAL TESTS OF REALISTIC LOCAL THEORIES VIA BELLS THEOREM [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1981, 47 (07) :460-463
[3]  
Bell J.S., 1964, PHYSICS, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/PhysicsPhysiqueFizika.1.195]
[4]   1/f flux noise in Josephson phase qubits [J].
Bialczak, Radoslaw C. ;
McDermott, R. ;
Ansmann, M. ;
Hofheinz, M. ;
Katz, N. ;
Lucero, Erik ;
Neeley, Matthew ;
O'Connell, A. D. ;
Wang, H. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[5]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[6]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[7]   Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout [J].
Cooper, KB ;
Steffen, M ;
McDermott, R ;
Simmonds, RW ;
Oh, S ;
Hite, DA ;
Pappas, DP ;
Martinis, JM .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :180401-1
[8]   Implementing Qubits with Superconducting Integrated Circuits [J].
Devoret, Michel H. ;
Martinis, John M. .
QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) :163-203
[9]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[10]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780