Demonstration of two-qubit algorithms with a superconducting quantum processor

被引:926
作者
DiCarlo, L. [1 ,2 ]
Chow, J. M. [1 ,2 ]
Gambetta, J. M. [3 ,4 ]
Bishop, Lev S. [1 ,2 ]
Johnson, B. R. [1 ,2 ]
Schuster, D. I. [1 ,2 ]
Majer, J. [5 ]
Blais, A. [6 ]
Frunzio, L. [1 ,2 ]
Girvin, S. M. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Yale Univ, Inst Quantum Comp, New Haven, CT 06511 USA
[5] TU Wien, Atominst Osterreich Univ, A-1020 Vienna, Austria
[6] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SEARCH ALGORITHM; QUBITS; STATE; IMPLEMENTATION; ENTANGLEMENT; CIRCUIT; PHOTON; CAVITY; BITS;
D O I
10.1038/nature08121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases(1,2). A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance(3-5), cold ion trap(6,7) and optical(8) systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms(1,2). We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture(9,10). This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.
引用
收藏
页码:240 / 244
页数:5
相关论文
共 30 条
[1]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[2]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[3]   Implementation of Grover's quantum search algorithm in a scalable system [J].
Brickman, KA ;
Haljan, PC ;
Lee, PJ ;
Acton, M ;
Deslauriers, L ;
Monroe, C .
PHYSICAL REVIEW A, 2005, 72 (05)
[4]   Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit [J].
Chow, J. M. ;
Gambetta, J. M. ;
Tornberg, L. ;
Koch, Jens ;
Bishop, Lev S. ;
Houck, A. A. ;
Johnson, B. R. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[5]   Experimental realization of a quantum algorithm [J].
Chuang, IL ;
Vandersypen, LMK ;
Zhou, XL ;
Leung, DW ;
Lloyd, S .
NATURE, 1998, 393 (6681) :143-146
[6]   Experimental implementation of fast quantum searching [J].
Chuang, IL ;
Gershenfeld, N ;
Kubinec, M .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3408-3411
[7]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[8]   Two-Qubit State Tomography Using a Joint Dispersive Readout [J].
Filipp, S. ;
Maurer, P. ;
Leek, P. J. ;
Baur, M. ;
Bianchetti, R. ;
Fink, J. M. ;
Goeppl, M. ;
Steffen, L. ;
Gambetta, J. M. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[9]   Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer [J].
Gulde, S ;
Riebe, M ;
Lancaster, GPT ;
Becher, C ;
Eschner, J ;
Häffner, H ;
Schmidt-Kaler, F ;
Chuang, IL ;
Blatt, R .
NATURE, 2003, 421 (6918) :48-50
[10]   Controlling the spontaneous emission of a superconducting transmon qubit [J].
Houck, A. A. ;
Schreier, J. A. ;
Johnson, B. R. ;
Chow, J. M. ;
Koch, Jens ;
Gambetta, J. M. ;
Schuster, D. I. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)