Control of surface induced phase separation in immiscible semiconductor alloy core-shell nanowires

被引:3
作者
Arjmand, M. [1 ]
Ke, J. H. [2 ]
Szlufarska, I. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
关键词
Phase separation; Nanowire; Heterostructure; III-V semiconductors; GASB;
D O I
10.1016/j.commatsci.2017.01.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semiconductor nanowires have been shown to exhibit novel optoelectronic properties with respect to bulk specimens made of the same material. However, if a semiconductor alloy has a miscibility gap in its phase diagram, at equilibrium it will phase separate, leading to deterioration of the aforementioned properties. One way to prevent this separation is to grow the material at low temperatures and therefore to suppress kinetics. Such growth often needs to be followed by high-temperature annealing in order to rid the system of undesirable growth-induced defects. In this study, we propose a method to control phase separation in core-shell nanowires during high temperature annealing by tailoring geometry and strain. Using a phase field model we determined that phase separation in nanowires begins at the free surface and propagates into the bulk. We discovered that including a thin shell around the core delays the phase separation whereas a thick shell suppresses the separation almost entirely. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 29 条
[1]   Effects of confinements on morphology of InxGa1-xAs thin film grown on sub-micron patterned GaAs substrate: Elastoplastic phase field model [J].
Arjmand, M. ;
Deng, J. ;
Swaminathan, N. ;
Morgan, D. ;
Szlufarska, I. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (11)
[2]   ELASTIC-CONSTANTS AND LATTICE ANHARMONICITY OF GASB AND GAP FROM ULTRASONIC-VELOCITY MEASUREMENTS BETWEEN 4.2 AND 300 K [J].
BOYLE, WF ;
SLADEK, RJ .
PHYSICAL REVIEW B, 1975, 11 (08) :2933-2940
[3]   Surface island formation with localized stresses [J].
Boyne, A. ;
Rauscher, M. D. ;
Dregia, S. A. ;
Wang, Y. .
SCRIPTA MATERIALIA, 2011, 64 (08) :705-708
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]  
Chen L., 2015, 2015 IEEE CUSTOM INT, P1, DOI DOI 10.1021/LA504333J
[6]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[7]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[8]   Growth and properties of III-V compound semiconductor heterostructure nanowires [J].
Gao, Q. ;
Tan, H. H. ;
Jackson, H. E. ;
Smith, L. M. ;
Yarrison-Rice, J. M. ;
Zou, Jin ;
Jagadish, C. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (01)
[9]   Phase diagrams and optical properties of phosphide, arsenide, and antimonide binary and ternary III-V nanoalloys [J].
Guisbiers, G. ;
Wautelet, M. ;
Buchaillot, L. .
PHYSICAL REVIEW B, 2009, 79 (15)
[10]   Phase Separation Induced by Au Catalysts in Ternary InGaAs Nanowires [J].
Guo, Ya-Nan ;
Xu, Hong-Yi ;
Auchterlonie, Graeme J. ;
Burgess, Tim ;
Joyce, Hannah J. ;
Gao, Qiang ;
Tan, Hark Hoe ;
Jagadish, Chennupati ;
Shu, Hai-Bo ;
Chen, Xiao-Shuang ;
Lu, Wei ;
Kim, Yong ;
Zou, Jin .
NANO LETTERS, 2013, 13 (02) :643-650