Control of surface induced phase separation in immiscible semiconductor alloy core-shell nanowires

被引:3
作者
Arjmand, M. [1 ]
Ke, J. H. [2 ]
Szlufarska, I. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
关键词
Phase separation; Nanowire; Heterostructure; III-V semiconductors; GASB;
D O I
10.1016/j.commatsci.2017.01.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semiconductor nanowires have been shown to exhibit novel optoelectronic properties with respect to bulk specimens made of the same material. However, if a semiconductor alloy has a miscibility gap in its phase diagram, at equilibrium it will phase separate, leading to deterioration of the aforementioned properties. One way to prevent this separation is to grow the material at low temperatures and therefore to suppress kinetics. Such growth often needs to be followed by high-temperature annealing in order to rid the system of undesirable growth-induced defects. In this study, we propose a method to control phase separation in core-shell nanowires during high temperature annealing by tailoring geometry and strain. Using a phase field model we determined that phase separation in nanowires begins at the free surface and propagates into the bulk. We discovered that including a thin shell around the core delays the phase separation whereas a thick shell suppresses the separation almost entirely. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 29 条
[11]   Growth of GaSb layers on GaAs (001) substrate by molecular beam epitaxy [J].
Hao, Ruiting ;
Xu, Yingqiang ;
Zhou, Zhiqiang ;
Ren, Zhengwei ;
Ni, Haiqiao ;
He, Zhenhong ;
Niu, Zhichuan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (04) :1080-1084
[12]   Strain-induced phase separation in annealed low-temperature grown Al0.3Ga0.7As [J].
Hsieh, KC ;
Hsieh, KY ;
Hwang, YL ;
Zhang, T ;
Kolbas, RM .
APPLIED PHYSICS LETTERS, 1996, 68 (13) :1790-1792
[13]   PHASE-DIAGRAM OF THE GA-AS-SB SYSTEM [J].
ISHIDA, K ;
SHUMIYA, T ;
NOMURA, T ;
OHTANI, H ;
NISHIZAWA, T .
JOURNAL OF THE LESS-COMMON METALS, 1988, 142 (1-2) :135-144
[14]   Misfit dislocations in nanowire heterostructures [J].
Kavanagh, Karen L. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (02)
[15]   Intermixing in GaAsSb/GaAs single quantum wells [J].
Khreis, OM ;
Homewood, KP ;
Gillin, WP ;
Singer, KE .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) :4017-4019
[16]   Epitaxial core-shell and core-multishell nanowire heterostructures [J].
Lauhon, LJ ;
Gudiksen, MS ;
Wang, CL ;
Lieber, CM .
NATURE, 2002, 420 (6911) :57-61
[17]   Critical thickness enhancement of epitaxial SiGe films grown on small structures [J].
Liang, Y ;
Nix, WD ;
Griffin, PB ;
Plummer, JD .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[18]   Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1-xBix epilayers [J].
Luna, E. ;
Wu, M. ;
Puustinen, J. ;
Guina, M. ;
Trampert, A. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (18)
[19]   Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors [J].
McAlpine, Michael C. ;
Ahmad, Habib ;
Wang, Dunwei ;
Heath, James R. .
NATURE MATERIALS, 2007, 6 (05) :379-384
[20]   An introduction to phase-field modeling of microstructure evolution [J].
Moelans, Nele ;
Blanpain, Bart ;
Wollants, Patrick .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2008, 32 (02) :268-294