Physicochemical approach to the effervescence in Champagne wines

被引:28
作者
Liger-Belair, G [1 ]
机构
[1] Fac Sci, Lab Oenonol, F-51687 Reims 2, France
关键词
D O I
10.1051/anphys:2002004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
People have long been fascinated by bubbles and foams dynamics, and since the pioneering work of Leonardo da Vinci in the early 16th century, this subject has generated a huge bibliography. However, only very recently, much interest was devoted to bubbles in Champagne wines. Small bubbles rising through the liquid, as well as a bubble ring (the so-called collar) at the periphery of a flute poured with champagne are the hallmark of this traditionally festive wine, and even there is no scientific evidence yet to connect the quality of a champagne with its effervescence, people nevertheless often make a connection between them. Therefore, since the last few years, a better understanding of the numerous parameters involved in the bubbling process has become an important stake in the champagne research area. Otherwise, in addition to these strictly enological reasons, we also feel that the area of bubble dynamics could benefit from the simple but close observation of a glass poured with champagne. In this study, our first results concerning the close observation of the three main steps of a champagne bubble's life are presented, that is, the bubble nucleation on tiny particles stuck on the glass wall (Chap. 2), the bubble ascent through the liquid (Chap. 3), and the bursting of bubbles at the free surface, which constitutes the most intriguing and visually appealing step (Chap. 4). Our results were obtained in real consuming conditions, that is, in a classical crystal flute poured with a standard commercial champagne wine. Champagne bubble nucleation proved to be a fantastic everyday example to illustrate the non-classical heterogeneous bubble nucleation process in a weakly supersaturated liquid. Contrary to a generally accepted idea, nucleation sites are not located on irregularities of the glass itself. Most of nucleation sites are located on tiny hollow and roughly cylindrical exogenous fibres coming from the surrounding air or remaining from the wiping process. Because of their geometry and hydrophobic properties, such particles are able to entrap gas pockets during the filling of a flute and to start up the bubble production process. Such particles are responsible for the clockwork and repetitive production of bubbles that rise in-line into the form of elegant bubble trains. This cycle of bubble production at a given nucleation site is characterised by its bubbling frequency. The time needed to reach the moment of bubble detachment depends on the kinetics of the CO2 molecules transfer from the champagne to the gas pocket, but also on the geometrical properties of the given nucleation site. Now, since a collection of particle shapes and sizes exists on the glass wall, the bubbling frequency may also vary from one site to another. Three minutes after pouring, we measured bubbling frequencies ranging from less than 1 Hz up to almost 30 Hz, which means that the most active nucleation sites emit up to 30 bubbles per second. After their detachment from nucleation sites, champagne bubbles rise in-line through the liquid into the form of elegant bubble trains. Since they collect dissolved carbon dioxide molecules, champagne bubbles expand during ascent and therefore constitute an original tool to investigate the dynamics of rising and expanding bubbles. Hydrodynamically speaking, champagne bubbles were found to reach a quasi-stationary stage intermediate between that of a rigid and that a fluid sphere (but nevertheless closer to that of a fluid sphere). This result drastically differs from the result classically observed with bubbles of fixed radii rising in surfactant solutions. Since surfactants progressively adsorb at the bubble surface during the rise, the drag coefficient of a rising bubble of fixed radius progressively increases, and finally reaches the rigid sphere limit when the bubble interface gets completely contaminated. In the case of champagne, since a bubble expands during its rise through the supersaturated liquid, the bubble interface continuously increases and therefore continuously offers newly created surface to the adsorbed surface-active materials (around 5 mg/l, mostly composed of proteins and glycoproteins). Champagne bubbles experience an interesting competition between two opposing effects. Our results suggest that the bubble growth during ascent approximately balance the adsorption rate of surface-active compounds on the rising bubble. We also compared the behaviour of champagne bubbles with that of beer bubbles. It was found that beer bubbles showed a behaviour, very close to that of rigid spheres. This is not a surprising result, since beer contains much higher amounts of surface-active molecules (of order of several hundreds mg/l) likely to be adsorbed at a bubble interface. Furthermore, since the gas content is lower in beer, growth rates of beer bubbles are lower than those of champagne. As a result, the dilution effect due to the rate of dilatation of the bubble area may be too weak to avoid the rigidification of the beer bubble interface. In a third set of experiments, we used instantaneous high-speed photography techniques to freeze the dynamics of bubbles collapsing at the free surface of a glass poured with champagne. The process following bubble collapse and leading to the projection of a high-speed liquid jet above the free surface was captured. A structural analogy between the liquid jet following a bubble collapse and the liquid jet following a drop impact was presented. By drawing a parallel between the fizz in champagne wines and the "fizz of the ocean", we also suggested that droplets issued from champagne bursting bubbles contain much higher amounts of surface-active and potentially aromatic materials than, the liquid bulk. The bursting of champagne bubbles is thus expected to play a major role in flavour release. Otherwise since the first photographic investigation were published about fifty years ago, numerous experiments have been conducted with single bubbles collapsing at a free surface. But to the best of our knowledge, and surprising as it may seem, no results concerning the collateral effects on adjoining bubbles of bubbles collapsing in a bubble monolayer have been reported up to now. Actually, effervescence in a glass of champagne ideally lends to a preliminary work with bubbles collapsing in a bubble monolayer. For a few seconds after pouring, the free surface is completely covered with a monolayer composed of quite monodisperse millimetric bubbles collapsing close to each others. We took high-speed photographs of the situation which immediately follows the rupture of a bubble cap in a bubble monolayer. Adjoining bubbles were found to be literally sucked and strongly stretched toward the lowest part of the cavity left by the bursting bubble, leading to unexpected and short-lived flower-shaped structures. Stresses in distorted bubbles (petals of the flower-shaped structure) were evaluated and found to be, at least, one order of magnitude higher than stresses numerically calculated in the boundary layer around an isolated single millimetric collapsing bubble. This is a brand-new and slightly counter-intuitive result. While absorbing the energy released during collapse, as an air-bag would do, adjoining bubble caps store this energy into their thin liquid film, leading finally to stresses much higher than those observed in the boundary layer around single millimetric collapsing bubbles. Further investigation should be conducted now, and especially numerically, in order to better understand the relative influence of each pertinent parameters (bubble size, liquid density and viscosity effect of surfactant...) on bubble deformation.
引用
收藏
页码:1 / +
页数:102
相关论文
共 92 条
[1]  
AGABALIANTZ GG, 1954, TRAVAUX I IND ALIMEN, V72, P356
[2]  
AGABALIANTZ GG, 1963, B OIV, V36, P703
[3]  
[Anonymous], TELLUS B
[4]  
[Anonymous], 1961, GROWTH FORM
[5]  
[Anonymous], AUST GRAPEGROW WINEM, DOI DOI 10.1016/S0076-6879(08)03212-6
[6]   Fragmentation of a drop as it falls in a lighter miscible fluid [J].
Arecchi, FT ;
BuahBassuah, PK ;
Francini, F ;
Residori, S .
PHYSICAL REVIEW E, 1996, 54 (01) :424-429
[7]   AN EXPERIMENTAL INVESTIGATION OF THE BREAK-UP OF A LIQUID-DROP FALLING IN A MISCIBLE FLUID [J].
ARECCHI, FT ;
BUAHBASSUAH, PK ;
FRANCINI, F ;
PEREZGARCIA, C ;
QUERCIOLI, F .
EUROPHYSICS LETTERS, 1989, 9 (04) :333-338
[8]   FRAGMENT FORMATION IN THE BREAK-UP OF A DROP FALLING IN A MISCIBLE LIQUID [J].
ARECCHI, FT ;
BUAHBASSUAH, PK ;
PEREZGARCIA, C .
EUROPHYSICS LETTERS, 1991, 15 (04) :429-434
[9]  
AYBERS NM, 1969, WARME STOFFUBERTRAG, V2, P171, DOI DOI 10.1007/BF00751164
[10]   ENTRAPMENT OF GAS IN THE SPREADING OF A LIQUID OVER A ROUGH SURFACE [J].
BANKOFF, SG .
AICHE JOURNAL, 1958, 4 (01) :24-26