Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis

被引:42
作者
Rizzi, M
Schindelin, H
机构
[1] Univ Piemonte Orientale, DISCAFF INFM, I-28100 Novara, Italy
[2] Univ Pavia, Dept Genet & Microbiol, I-27100 Pavia, Italy
[3] SUNY Stony Brook, Dept Biochem, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Ctr Struct Biol, Stony Brook, NY 11794 USA
关键词
D O I
10.1016/S0959-440X(02)00385-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structural analysis of all enzymes in a metabolic pathway is a prerequisite to answering fascinating questions, such as those relating to the evolutionary relationships between enzymes within the same and related pathways. Furthermore, the observed impressive diversity of catalytic functions displayed by these enzymes can lead to the synthesis of highly complex or unstable molecules, frequently involving unusual chemical reactions. Moreover, a detailed description of the active site of each enzyme in a pathway is of immense importance for the rational design of new drugs. The recent progress made in the structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis presents a significant step toward these goals.
引用
收藏
页码:709 / 720
页数:12
相关论文
共 76 条
[1]   Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Cohen, H ;
Lin, SS ;
Manchester, JK ;
Gordon, JI ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) :18881-18890
[2]  
Begley TP, 2001, VITAM HORM, V61, P103
[3]   Structure of FAD-bound L-aspartate oxidase: Insight into substrate specificity and catalysis [J].
Bossi, RT ;
Negri, A ;
Tedeschi, G ;
Mattevi, A .
BIOCHEMISTRY, 2002, 41 (09) :3018-3024
[4]   Cloning, overexpression, and purification of Escherichia coli quinolinate synthetase [J].
Ceciliani, F ;
Caramori, T ;
Ronchi, S ;
Tedeschi, G ;
Mortarino, M ;
Galizzi, A .
PROTEIN EXPRESSION AND PURIFICATION, 2000, 18 (01) :64-70
[5]   Structure of nicotinamide mononucleotide adenylyltransferase:: a key enzyme in NAD+ biosynthesis [J].
D'Angelo, I ;
Raffaelli, N ;
Dabusti, V ;
Lorenzi, T ;
Magni, G ;
Rizzi, M .
STRUCTURE, 2000, 8 (09) :993-1004
[6]   Stabilization of active-site loops in NH3-dependent NAD+ synthetase from Bacillus subtilis [J].
Devedjiev, Y ;
Symersky, J ;
Singh, R ;
Jedrzejas, M ;
Brouillette, C ;
Brouillette, W ;
Muccio, D ;
Chattopadhyay, D ;
DeLucas, L .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2001, 57 :806-812
[7]   A new function for a common fold: The crystal structure of quinolinic acid phosphoribosyltransferase [J].
Eads, JC ;
Ozturk, D ;
Wexler, TB ;
Grubmeyer, C ;
Sacchettini, JC .
STRUCTURE, 1997, 5 (01) :47-58
[8]   Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin [J].
Essrich, C ;
Lorez, M ;
Benson, JA ;
Fritschy, JM ;
Lüscher, B .
NATURE NEUROSCIENCE, 1998, 1 (07) :563-571
[9]   Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity [J].
Feng, GP ;
Tintrup, H ;
Kirsch, J ;
Nichol, MC ;
Kuhse, J ;
Betz, H ;
Sanes, JR .
SCIENCE, 1998, 282 (5392) :1321-1324
[10]  
Frey PA, 2001, ADV PROTEIN CHEM, V58, P1