Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients

被引:74
作者
Cournac, L [1 ]
Mus, F
Bernard, L
Guedeney, G
Vignais, P
Peltier, G
机构
[1] Univ Mediterranee, CEA, UMR 163 CNRS, DSV,DEVM,Lab Ecophysiol Photosynthese, F-13108 St Paul Les Durance, France
[2] UJF, UMR 5092 CNRS, CEA, DSV,DBMS,Lab Biochim & Biophys Syst Integres, F-38054 Grenoble 9, France
关键词
hydrogen photo-production; hydrogenase; NADH dehydrogenase; photosynthesis; respiration;
D O I
10.1016/S0360-3199(02)00105-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the cyanobacterium Synechocystis PCC 6803 and in the microalga Chlamydomonas reinhardtii, transient hydrogen photo-production is observed when cells are exposed to light in anoxia. We measured changes in H-2, O-2, and CO2 concentrations using time-resolved mass spectrometry in wild-type and mutant strains of Chlamydomonas and Synechocystis. In both organisms, non-photochemical reduction of the plastoquinone pool is shown to contribute to the initial H-2 photo-production. This pathway, which does not produce O-2, exhibits a low rate in normal conditions. From the effect of the uncoupler FCCP, we conclude that PS II-independent H-2 production in Chlamydomonas is limited by the trans-thylakoidal proton gradient. In Synechocystis, from the study of a mutant deficient in the NDH-I complex (M55), we conclude that PS II-independent H-2 production is limited by recycling of NAD(P)H through the NDH-I complex. Based on these conclusions, we propose strategies for optimising H-2 photo-production in these organisms. (C) 2002 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1229 / 1237
页数:9
相关论文
共 38 条
[21]   PHYSIOLOGICAL AND GENETIC-ANALYSIS OF THE GLUCOSE-FRUCTOSE PERMEATION SYSTEM IN 2 SYNECHOCYSTIS SPECIES [J].
JOSET, F ;
BUCHOU, T ;
ZHANG, CC ;
JEANJEAN, R .
ARCHIVES OF MICROBIOLOGY, 1988, 149 (05) :417-421
[22]   CONTINUOUS MONITORING, BY MASS-SPECTROMETRY, OF H-2 PRODUCTION AND RECYCLING IN RHODOPSEUDOMONAS-CAPSULATA [J].
JOUANNEAU, Y ;
KELLEY, BC ;
BERLIER, Y ;
LESPINAT, PA ;
VIGNAIS, PM .
JOURNAL OF BACTERIOLOGY, 1980, 143 (02) :628-636
[23]   LIGHT-DEPENDENT HYDROGEN EVOLUTION BY SCENEDESMUS [J].
KALTWASS.H ;
STUART, TS ;
GAFFRON, H .
PLANTA, 1969, 89 (04) :309-&
[24]  
Kaneko T, 1996, DNA Res, V3, P109
[25]   FERMENTATIVE METABOLISM OF HYDROGEN-EVOLVING CHLAMYDOMONAS-MOEWUSII [J].
KLEIN, U ;
BETZ, A .
PLANT PHYSIOLOGY, 1978, 61 (06) :953-956
[26]  
Lichtenthaler HK, 1983, BIOCHEM SOC T, V11, P591, DOI DOI 10.1042/BST0110591
[27]  
MARKER A F H, 1972, Freshwater Biology, V2, P361, DOI 10.1111/j.1365-2427.1972.tb00377.x
[28]   Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii [J].
Melis, A ;
Zhang, LP ;
Forestier, M ;
Ghirardi, ML ;
Seibert, M .
PLANT PHYSIOLOGY, 2000, 122 (01) :127-135
[29]   A GENE HOMOLOGOUS TO THE SUBUNIT-2 GENE OF NADH DEHYDROGENASE IS ESSENTIAL TO INORGANIC CARBON TRANSPORT OF SYNECHOCYSTIS PCC6803 [J].
OGAWA, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (10) :4275-4279
[30]   Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp strain PCC 6803 [J].
Ohkawa, H ;
Sonoda, M ;
Shibata, M ;
Ogawa, T .
JOURNAL OF BACTERIOLOGY, 2001, 183 (16) :4938-4939