Knotting probability of a shaken ball-chain

被引:12
作者
Hickford, J. [1 ]
Jones, R.
du Pont, S. Courrech
Eggers, J.
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevE.74.052101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the formation of knots on a macroscopic ball chain, which is shaken on a horizontal plate at 12 times the acceleration of gravity. We find that above a certain critical length, the knotting probability is independent of chain length, while the time to shake out a knot increases rapidly with chain length. The probability of finding a knot after a certain time is the result of the balance of these two processes. In particular, the knotting probability tends to a constant for long chains.
引用
收藏
页数:4
相关论文
共 6 条
[1]  
ADAMS AC, 2000, KNOT BOOK
[2]   Dynamic patterns and self-knotting of a driven hanging chain [J].
Belmonte, A ;
Shelley, MJ ;
Eldakar, ST ;
Wiggins, CH .
PHYSICAL REVIEW LETTERS, 2001, 87 (11)
[3]   Knots and random walks in vibrated granular chains [J].
Ben-Naim, E ;
Daya, ZA ;
Vorobieff, P ;
Ecke, RE .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1414-1417
[4]   KNOTTEDNESS IN RING POLYMERS [J].
KONIARIS, K ;
MUTHUKUMAR, M .
PHYSICAL REVIEW LETTERS, 1991, 66 (17) :2211-2214
[5]   KNOTS IN SELF-AVOIDING WALKS [J].
SUMNERS, DW ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1689-1694
[6]   BIOCHEMICAL TOPOLOGY - APPLICATIONS TO DNA RECOMBINATION AND REPLICATION [J].
WASSERMAN, SA ;
COZZARELLI, NR .
SCIENCE, 1986, 232 (4753) :951-960