Transcriptional regulatory networks in Saccharomyces cerevisiae

被引:2151
作者
Lee, TI
Rinaldi, NJ
Robert, F
Odom, DT
Bar-Joseph, Z
Gerber, GK
Hannett, NM
Harbison, CT
Thompson, CM
Simon, I
Zeitlinger, J
Jennings, EG
Murray, HL
Gordon, DB
Ren, B
Wyrick, JJ
Tagne, JB
Volkert, TL
Fraenkel, E
Gifford, DK
Young, RA
机构
[1] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] MIT, Comp Sci Lab, Cambridge, MA 02139 USA
关键词
D O I
10.1126/science.1075090
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.
引用
收藏
页码:799 / 804
页数:7
相关论文
共 47 条
  • [11] Genome-wide responses to mitochondrial dysfunction
    Epstein, CB
    Waddle, JA
    Hale, W
    Davé, V
    Thornton, J
    Macatee, TL
    Garner, HR
    Butow, RA
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) : 297 - 308
  • [12] Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability
    Ferrell, JE
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (02) : 140 - 148
  • [13] Recognition of specific DNA sequences
    Garvie, CW
    Wolberger, C
    [J]. MOLECULAR CELL, 2001, 8 (05) : 937 - 946
  • [14] Genomic expression programs in the response of yeast cells to environmental changes
    Gasch, AP
    Spellman, PT
    Kao, CM
    Carmel-Harel, O
    Eisen, MB
    Storz, G
    Botstein, D
    Brown, PO
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) : 4241 - 4257
  • [15] GOLDBETER A, 1984, J BIOL CHEM, V259, P14441
  • [16] Topological and causal structure of the yeast transcriptional regulatory network
    Guelzim, N
    Bottani, S
    Bourgine, P
    Képès, F
    [J]. NATURE GENETICS, 2002, 31 (01) : 60 - 63
  • [17] SUPPRESSION OF YEAST RNA-POLYMERASE-III MUTATIONS BY FHL1, A GENE CODING FOR A FORK HEAD PROTEIN INVOLVED IN RIBOSOMAL-RNA PROCESSING
    HERMANNLEDENMAT, S
    WERNER, M
    SENTENAC, A
    THURIAUX, P
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (05) : 2905 - 2913
  • [18] Ho W, 1999, MOL CELL BIOL, V19, P5267
  • [19] Functional discovery via a compendium of expression profiles
    Hughes, TR
    Marton, MJ
    Jones, AR
    Roberts, CJ
    Stoughton, R
    Armour, CD
    Bennett, HA
    Coffey, E
    Dai, HY
    He, YDD
    Kidd, MJ
    King, AM
    Meyer, MR
    Slade, D
    Lum, PY
    Stepaniants, SB
    Shoemaker, DD
    Gachotte, D
    Chakraburtty, K
    Simon, J
    Bard, M
    Friend, SH
    [J]. CELL, 2000, 102 (01) : 109 - 126
  • [20] Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
    Iyer, VR
    Horak, CE
    Scafe, CS
    Botstein, D
    Snyder, M
    Brown, PO
    [J]. NATURE, 2001, 409 (6819) : 533 - 538