Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism

被引:128
作者
McCollum, Andrea K.
TenEyck, Cynthia J.
Sauer, Brian M.
Toft, David O.
Erlichman, Charles
机构
[1] Mayo Clin & Mayo Fdn, Dept Oncol, Rochester, MN 55905 USA
[2] Mayo Clin, Coll Med, Dept Mol Pharmacol & Expt Therapeut, Rochester, MN USA
[3] Mayo Clin, Coll Med, Dept Biochem & Mol Biol, Rochester, MN USA
关键词
D O I
10.1158/0008-5472.CAN-06-1629
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
17-Allylamino-demethoxygeldanamycin (17-AAG), currently in phase I and 11 clinical trials as an anticancer agent, binds to the ATP pocket of heat shock protein (Hsp90). This binding induces a cellular stress response that up-regulates many proteins including Hsp27, a member of the small heat shock protein family that has cytoprotective roles, including chaperoning of cellular proteins, regulation of apoptotic signaling, and modulation of oxidative stress. Therefore, we hypothesized that Hsp27 expression may affect cancer cell sensitivity to 17-AAG. In colony-forming assays, overexpression of Hsp27 increased cell resistance to 17-AAG whereas down-regulation of Hsp27 by siRNA increased sensitivity. Because Hsp27 is known to modulate levels of glutathione (GSH), we examined cellular levels of GSH and found that it was decreased in cells transfected with Hsp27 siRNA when compared with control siRNA. Treatment with buthionine sulfoximine, an inhibitor of GSH synthesis, also sensitized cells to 17-AAG. Conversely, treatment of Hsp27 siRNA-transfected cells with N-acetylcysteine, an antioxidant and GSH precursor, reversed their sensitivity to 17-AAG. A cell line selected for stable resistance to geldanamycin relative to parent cells showed increased Hsp27 expression. When these geldanamycin- and 17-AAG-resistant cells were transfected with Hsp27 siRNA, 17-AAG resistance was dramatically diminished. Our results suggest that Hsp27 up-regulation has a significant role in 17-AAG resistance, which may be mediated in part through GSH regulation. Clinical modulation of GSH may therefore enhance the efficacy of Hsp90-directed therapy.
引用
收藏
页码:10967 / 10975
页数:9
相关论文
共 51 条
[1]  
Bagatell R, 2000, CLIN CANCER RES, V6, P3312
[2]   PHASE-I CLINICAL-TRIAL OF INTRAVENOUS L-BUTHIONINE SULFOXIMINE AND MELPHALAN - AN ATTEMPT AT MODULATION OF GLUTATHIONE [J].
BAILEY, HH ;
MULCAHY, RT ;
TUTSCH, KD ;
ARZOOMANIAN, RZ ;
ALBERTI, D ;
TOMBES, MB ;
WILDING, G ;
POMPLUN, M ;
SPRIGGS, DR .
JOURNAL OF CLINICAL ONCOLOGY, 1994, 12 (01) :194-205
[3]   Phase I pharmacokinetic and pharmacodynarnic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies [J].
Banerji, U ;
O'Donnell, A ;
Scurr, M ;
Pacey, S ;
Stapleton, S ;
Asad, Y ;
Simmons, L ;
Maloney, A ;
Raynaud, F ;
Campbell, M ;
Walton, M ;
Lakhani, S ;
Kaye, S ;
Workman, P ;
Judson, I .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (18) :4152-4161
[4]   Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models [J].
Banerji, U ;
Walton, M ;
Raynaud, F ;
Grimshaw, R ;
Kelland, L ;
Valenti, M ;
Judson, I ;
Workman, P .
CLINICAL CANCER RESEARCH, 2005, 11 (19) :7023-7032
[5]   Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes [J].
Barent, RL ;
Nair, SC ;
Carr, DC ;
Ruan, Y ;
Rimerman, RA ;
Fulton, J ;
Zhang, Y ;
Smith, DF .
MOLECULAR ENDOCRINOLOGY, 1998, 12 (03) :342-354
[6]  
BENCHEKROUN MN, 1994, FREE RADICAL BIO MED, V17, P191
[7]  
BENCHEKROUN MN, 1994, MOL PHARMACOL, V46, P677
[8]   Geldanamycin-induced cytotoxicity in human colon-cancer cell lines: evidence against the involvement of c-Src or DT-diaphorase [J].
Brunton, VG ;
Steele, G ;
Lewis, AD ;
Workman, P .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 1998, 41 (05) :417-422
[9]   The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress [J].
Chakravarthi, S ;
Jessop, CE ;
Bulleid, NJ .
EMBO REPORTS, 2006, 7 (03) :271-275
[10]   Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of hsp90 molecular chaperone [J].
Clarke, PA ;
Hostein, I ;
Banerji, U ;
Di Stefano, F ;
Maloney, A ;
Walton, M ;
Judson, I ;
Workman, P .
ONCOGENE, 2000, 19 (36) :4125-4133