A direct uniqueness proof for equations involving the p-Laplace operator

被引:109
作者
Belloni, M
Kawohl, B
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] Univ Cologne, Math Inst, D-50923 Cologne, Germany
关键词
Uniqueness Theorem; Previous Proof; Direct Uniqueness; Simple Convexity; Uniqueness Proof;
D O I
10.1007/s00229-002-0305-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a simple convexity argument for some known uniqueness theorems. Previous proofs were more technical and had to pay attention to the behaviour of solutions near the boundary.
引用
收藏
页码:229 / 231
页数:3
相关论文
共 12 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]  
ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
[3]  
Barles G., 1988, ANN FAC SCI TOULOUSE, V9, P65, DOI DOI 10.5802/AFST.649
[4]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[5]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[6]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521
[7]   Symmetry results for functions yielding best constants in Sobolev-type inequalities [J].
Kawohl, B .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) :683-690
[8]  
KAWOHL B, 1988, Z ANGEW MATH MECH, V68, pT459
[9]   ADDENDUM [J].
LINDQVIST, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (02) :583-584