Symmetry results for functions yielding best constants in Sobolev-type inequalities

被引:47
作者
Kawohl, B [1 ]
机构
[1] Univ Cologne, Inst Math, D-50923 Cologne, Germany
关键词
symmetry; Sobolev inequality; eigenvalues;
D O I
10.3934/dcds.2000.6.683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
I report on symmetry results for functions which yield sharp constants in various Sobolev-type inequalities. One of these results relies on a surprising convexity property.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 23 条
[1]   A symmetry problem related to Wirtinger's and Poincare's inequality [J].
Belloni, M ;
Kawohl, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :211-218
[2]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[3]   A symmetry problem in the calculus of variations [J].
Brock, F ;
Ferone, V ;
Kawohl, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (06) :593-599
[4]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[5]   On a family of extremum problems and the properties of an integral [J].
Buslaev, AP ;
Kondrat'ev, VA ;
Nazarov, AI .
MATHEMATICAL NOTES, 1998, 64 (5-6) :719-725
[6]   Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli [J].
Byeon, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (01) :136-165
[7]   Nonlinear elliptic equations on expanding symmetric domains [J].
Catrina, F ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) :153-181
[8]  
CHANILLO S, 1999, UNPUB SYMMETRY BREAK, P1
[9]   A NON-LINEAR BOUNDARY-VALUE PROBLEM WITH MANY POSITIVE SOLUTIONS [J].
COFFMAN, CV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (03) :429-437
[10]  
COFFMAN CV, 1972, ARCH RATION MECH AN, V46, P81