Symmetry results for functions yielding best constants in Sobolev-type inequalities

被引:47
作者
Kawohl, B [1 ]
机构
[1] Univ Cologne, Inst Math, D-50923 Cologne, Germany
关键词
symmetry; Sobolev inequality; eigenvalues;
D O I
10.3934/dcds.2000.6.683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
I report on symmetry results for functions which yield sharp constants in various Sobolev-type inequalities. One of these results relies on a surprising convexity property.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 23 条
[11]   A GENERALIZATION OF WIRTINGER INEQUALITY [J].
DACOROGNA, B ;
GANGBO, W ;
SUBIA, N .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (01) :29-50
[12]  
DRABEK P, 1999, CRC RES NOTES MATH S, V404, P1
[13]   On a Kondratiev problem [J].
Egorov, YV .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05) :503-507
[14]   Radial symmetry and decay rate of variational ground states in the zero mass case [J].
Flucher, M ;
Muller, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (03) :712-719
[15]  
KAWOHL B, UNPUB
[16]  
KAWOHL B, 1999, CRC RES NOTES MATH, V406, P414
[17]  
LI Y, 1993, COMM PARTIAL DIFFER, V156, P153
[18]   EXISTENCE OF MANY POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS ON ANNULUS [J].
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (02) :348-367
[19]   EXISTENCE OF MANY POSITIVE NONRADIAL SOLUTIONS FOR NONLINEAR ELLIPTIC-EQUATIONS ON AN ANNULUS [J].
LIN, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :338-349
[20]   ADDENDUM [J].
LINDQVIST, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (02) :583-584