Integration of microbolometers with infrared microstrip antennas

被引:16
作者
Codreanu, I [1 ]
Boreman, GD [1 ]
机构
[1] Univ Cent Florida, Sch Opt, CREOL, Orlando, FL 32816 USA
基金
美国国家航空航天局;
关键词
IR detector; infrared antenna; microstrip dipole; microbolometer;
D O I
10.1016/S1350-4495(02)00123-8
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report on various integration schemes of infrared microbolometers with microstrip antennas. The first integration design consists of two gold (An) rectangular microstrip patches coupled along the radiating edges by a narrow niobium (Nb) strip. Devices using silicon oxide are compared to devices using amorphous silicon as antenna substrate. An extension of the twin-patch detector design is the microstrip dipole antenna-coupled microbolometer. Two ways of connecting the device to the contact pads via narrow dc leads are presented and compared. The contribution of the dc leads to the detector response is eliminated by directly connecting the dipole to the contact pads. The thermal isolation of the microbolometer from the silicon wafer is improved by incorporating air into the antenna dielectric substrate. This leads to higher detector responsivity and shifts the resonance towards longer antennas. The implementation of a bridge microstrip, dipole antenna structure is also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 13 条
[1]   Deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas [J].
Alda, J ;
Fumeaux, C ;
Codreanu, I ;
Schaefer, JA ;
Boreman, GD .
APPLIED OPTICS, 1999, 38 (19) :3993-4000
[2]  
Balanis C. A., 2005, ANTENNA THEORY
[3]   Microstrip antenna coupling for quantum-well infrared photodetectors [J].
Beck, WA ;
Mirotznik, MS .
INFRARED PHYSICS & TECHNOLOGY, 2001, 42 (3-5) :189-198
[4]   Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation [J].
Chong, N ;
Ahmed, H .
APPLIED PHYSICS LETTERS, 1997, 71 (12) :1607-1609
[5]   Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas [J].
Fumeaux, C ;
Herrmann, W ;
Rothuizen, H ;
DeNatale, P ;
Kneubuhl, FK .
APPLIED PHYSICS B-LASERS AND OPTICS, 1996, 63 (02) :135-140
[6]   Polarization response of asymmetric-spiral infrared antennas [J].
Fumeaux, C ;
Boreman, GD ;
Herrmann, W ;
Rothuizen, H ;
Kneubuhl, FK .
APPLIED OPTICS, 1997, 36 (25) :6485-6490
[7]   LITHOGRAPHIC SPIRAL ANTENNAS AT SHORT WAVELENGTHS [J].
GROSSMAN, EN ;
SAUVAGEAU, JE ;
MCDONALD, DG .
APPLIED PHYSICS LETTERS, 1991, 59 (25) :3225-3227
[8]   FREQUENCY MIXING IN INFRARED AND FAR-INFRARED USING A METAL-TO-METAL POINT CONTACT DIODE [J].
HOCKER, LO ;
SOKOLOFF, DR ;
DANEU, V ;
SZOKE, A ;
JAVAN, A .
APPLIED PHYSICS LETTERS, 1968, 12 (12) :401-&
[9]   DIRECTLY COUPLED MULTIPLE RESONATOR WIDEBAND MICROSTRIP ANTENNAS [J].
KUMAR, G ;
GUPTA, KC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1985, 33 (06) :588-593
[10]   AC ELECTRON TUNNELING AT INFRARED FREQUENCIES - THIN-FILM M-O-M DIODE STRUCTURE WITH BROAD-BAND CHARACTERISTICS [J].
SMALL, JG ;
ELCHINGER, GM ;
JAVAN, A ;
SANCHEZ, A ;
BACHNER, FJ ;
SMYTHE, DL .
APPLIED PHYSICS LETTERS, 1974, 24 (06) :275-279