Protein kinases, as crucial signaling molecules, represent an emerging class of drug targets, and the ability to assay their activities in living cells with high-throughput screening should provide exciting opportunities for drug discovery and chemical and functional genomics. Here, we describe a general method for high-throughput reading of dynamic kinase activities using ratiometric fluorescent sensors, and showcase an example of reading intracellular activities of protein kinase A ( PKA) and the cyclic adenosine monophosphate ( cAMP)/ PKA pathway downstream of many G-protein coupled receptors ( GPCRs). We further demonstrate the first compound screen based on the ability of compounds to modulate dynamic kinase activities in living cells and show that such screening of a collection of clinical compounds has successfully identified modulators of the GPCR/ cAMP/ PKA pathway.