Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments

被引:367
作者
DiPilato, LM
Cheng, XD
Zhang, J
机构
[1] Johns Hopkins Univ, Sch Med, Dept Pharmacol & Mol Sci, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA
[3] Univ Texas, Med Branch, Dept Pharmacol & Toxicol, Galveston, TX 77555 USA
关键词
FRET; cAMP-dependent protein kinase;
D O I
10.1073/pnas.0405973101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Second messenger cAMP regulates many cellular functions through its effectors, such as cAMP-dependent protein kinase (PKA) and Epac (exchange proteins directly activated by cAMP). Spatial and temporal control of cAMP signaling is crucial to differential regulation of cellular targets involved in various signaling cascades. To investigate the compartmentalized cAMP signaling, we constructed fluorescent indicators that report intracellular cAMP dynamics and Epac activation by sandwiching the full-length Epac1 between cyan and yellow mutants of GFP. Elevations of cAMP decreased FRET and increased the ratio of cyan-to-yellow emissions by 10-30% in living mammalian cells. This response can be reversed by removing cAMP-elevating agents and abolished by mutating the critical residue responsible for cAMP binding. Targeting of the reporter to the plasma membrane, where cAMP is produced in response to the activation of beta-adrenergic receptor, revealed a faster cAMP response at the membrane than in the cytoplasm and mitochondria. Simultaneous imaging with targeted cAMP indicator and PKA activity reporter allowed the detection of a much delayed PKA response in the nucleus after the rapid accumulation of cAMP at the plasma membrane of the same cell, despite the immediate presence of a pool of cAMP in the nucleus. Thus, cAMP dynamics and the activation of its effectors are precisely controlled spatiotemporally in vivo.
引用
收藏
页码:16513 / 16518
页数:6
相关论文
共 43 条
[1]   FLUORESCENCE RATIO IMAGING OF CYCLIC-AMP IN SINGLE CELLS [J].
ADAMS, SR ;
HAROOTUNIAN, AT ;
BUECHLER, YJ ;
TAYLOR, SS ;
TSIEN, RY .
NATURE, 1991, 349 (6311) :694-697
[2]   SPATIALLY RESOLVED DYNAMICS OF CAMP AND PROTEIN KINASE-A SUBUNITS IN APLYSIA SENSORY NEURONS [J].
BACSKAI, BJ ;
HOCHNER, B ;
MAHAUTSMITH, M ;
ADAMS, SR ;
KAANG, BK ;
KANDEL, ER ;
TSIEN, RY .
SCIENCE, 1993, 260 (5105) :222-226
[3]   Epac: a new cAMP target and new avenues in cAMP research [J].
Bos, JL .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (09) :733-738
[4]  
Bundey R. A., 2004, SCI STKE, pe19
[5]   Reinventing the wheel of cyclic AMP - Novel mechanisms of cAMP signaling [J].
Chin, KV ;
Yang, WL ;
Ravatn, R ;
Kita, T ;
Reitman, E ;
Vettori, D ;
Cvijic, ME ;
Shin, M ;
Iacono, L .
PROTEIN KINASE A AND HUMAN DISEASE, 2002, 968 :49-64
[6]   Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP [J].
de Rooij, J ;
Zwartkruis, FJT ;
Verheijen, MHG ;
Cool, RH ;
Nijman, SMB ;
Wittinghofer, A ;
Bos, JL .
NATURE, 1998, 396 (6710) :474-477
[7]   Single cell Ca2+/cAMP cross-talk monitored by simultaneous Ca2+/cAMP fluorescence ratio imaging [J].
DeBernardi, MA ;
Brooker, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (10) :4577-4582
[8]   mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module [J].
Dodge, KL ;
Khouangsathiene, S ;
Kapiloff, MS ;
Mouton, R ;
Hill, EV ;
Houslay, MD ;
Langeberg, LK ;
Scott, JD .
EMBO JOURNAL, 2001, 20 (08) :1921-1930
[9]   A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK [J].
Enserink, JM ;
Christensen, AE ;
de Rooij, J ;
van Triest, M ;
Schwede, F ;
Genieser, HG ;
Doskeland, SO ;
Blank, JL ;
Bos, JL .
NATURE CELL BIOLOGY, 2002, 4 (11) :901-906
[10]   Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria [J].
Filippin, L ;
Magalhaes, PJ ;
Di Benedetto, G ;
Colella, M ;
Pozzan, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :39224-39234