Comparative study on ChIP-seq data: normalization and binding pattern characterization

被引:42
作者
Taslim, Cenny [1 ,2 ]
Wu, Jiejun [1 ]
Yan, Pearlly [1 ]
Singer, Greg [1 ]
Parvin, Jeffrey [3 ,4 ]
Huang, Tim [1 ]
Lin, Shili [2 ]
Huang, Kun [3 ,4 ]
机构
[1] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, OSUCCC Biomed Informat Shared Resources, Columbus, OH 43210 USA
关键词
GENOME-WIDE ANALYSIS; ESTROGEN-RECEPTOR; GENE-EXPRESSION; METHYLATION; DESIGN; CELLS;
D O I
10.1093/bioinformatics/btp384
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antibody-based Chromatin Immunoprecipitation assay followed by high-throughput sequencing technology (ChIP-seq) is a relatively new method to study the binding patterns of specific protein molecules over the entire genome. ChIP-seq technology allows scientist to get more comprehensive results in shorter time. Here, we present a non-linear normalization algorithm and a mixture modeling method for comparing ChIP-seq data from multiple samples and characterizing genes based on their RNA polymerase II (Pol II) binding patterns. Results: We apply a two-step non-linear normalization method based on locally weighted regression (LOESS) approach to compare ChIP-seq data across multiple samples and model the difference using an Exponential-Normal(K) mixture model. Fitted model is used to identify genes associated with differential binding sites based on local false discovery rate (fdr). These genes are then standardized and hierarchically clustered to characterize their Pol II binding patterns. As a case study, we apply the analysis procedure comparing normal breast cancer (MCF7) to tamoxifen-resistant (OHT) cell line. We find enriched regions that are associated with cancer (P < 0.0001). Our findings also imply that there may be a dysregulation of cell cycle and gene expression control pathways in the tamoxifen-resistant cells. These results show that the non-linear normalization method can be used to analyze ChIP-seq data across multiple samples.
引用
收藏
页码:2334 / 2340
页数:7
相关论文
共 25 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267
[2]  
[Anonymous], 2008, GENOME BIOL
[3]   Genome-wide analysis of estrogen receptor binding sites [J].
Carroll, Jason S. ;
Meyer, Clifford A. ;
Song, Jun ;
Li, Wei ;
Geistlinger, Timothy R. ;
Eeckhoute, Jerome ;
Brodsky, Alexander S. ;
Keeton, Erika Krasnickas ;
Fertuck, Kirsten C. ;
Hall, Giles F. ;
Wang, Qianben ;
Bekiranov, Stefan ;
Sementchenko, Victor ;
Fox, Edward A. ;
Silver, Pamela A. ;
Gingeras, Thomas R. ;
Liu, X. Shirley ;
Brown, Myles .
NATURE GENETICS, 2006, 38 (11) :1289-1297
[4]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[5]   Normal uniform mixture differential gene expression detection for cDNA microarrays [J].
Dean, N ;
Raftery, AE .
BMC BIOINFORMATICS, 2005, 6 (1)
[6]   Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant [J].
Fan, Meiyun ;
Yan, Pearlly S. ;
Hartman-Frey, Cori ;
Chen, Lei ;
Paik, Henry ;
Oyer, Samuel L. ;
Salisbury, Jonathan D. ;
Cheng, Alfred S. L. ;
Li, Lang ;
Abbosh, Phillip H. ;
Huang, Tim H-M. ;
Nephew, Kenneth P. .
CANCER RESEARCH, 2006, 66 (24) :11954-11966
[7]   A Poisson mixture model to identify changes in RNA polymerase II binding quantity using high-throughput sequencing technology [J].
Feng, Weixing ;
Liu, Yunlong ;
Wu, Jiejun ;
Nephew, Kenneth P. ;
Huang, Tim H. M. ;
Li, Lang .
BMC GENOMICS, 2008, 9 (Suppl 2)
[8]   ChIP-chip: A genomic approach for identifying transcription factor binding sites [J].
Horak, CE ;
Snyder, M .
GUIDE TO YEAST GENETICS AND MOLECULAR AND CELL BIOLOGY, PT B, 2002, 350 :469-483
[9]  
HULKA B, 2004, CANCER S3, V74, P1111
[10]   An integrated software system for analyzing ChIP-chip and ChIP-seq data [J].
Ji, Hongkai ;
Jiang, Hui ;
Ma, Wenxiu ;
Johnson, David S. ;
Myers, Richard M. ;
Wong, Wing H. .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1293-1300