Asymptotic expansion of lattice loop integrals around the continuum limit
被引:16
作者:
Becher, T
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USAStanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA
Becher, T
[1
]
Melnikov, K
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USAStanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA
Melnikov, K
[1
]
机构:
[1] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA
来源:
PHYSICAL REVIEW D
|
2002年
/
66卷
/
07期
关键词:
D O I:
10.1103/PhysRevD.66.074508
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We present a method of computing any one-loop integral in lattice perturbation theory by systematically expanding around its continuum limit. At any order in the expansion in the lattice spacing, the result can be written as a sum of continuum loop integrals in analytic regularization and a few genuine lattice integrals ("master integrals"). These lattice master integrals are independent of external momenta and masses and can be computed numerically. At the one-loop level, there are four master integrals in a theory with only bosonic fields, seven in HQET and sixteen in QED or QCD with Wilson fermions.