Gain curves for direct-drive fast ignition at densities around 300 g/cc

被引:35
作者
Betti, R.
Solodov, A. A.
Delettrez, J. A.
Zhou, C.
机构
[1] Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit Ph, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.2359720
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The maximum gain attainable from fast-ignited direct-drive implosions is derived based on realistic target designs and laser pulses, one-dimensional simulations of the implosion, and two-dimensional simulations of ignition by a collimated electron beam and burn propagation. Since the implosion characteristics are set by the optimized target design, the ratio of the thermonuclear energy to the compression laser energy is a unique function of the driver energy on target. It is shown that, if ignited, the fuel assembled by a 100-kJ UV laser can yield close to 6 MJ of thermonuclear energy. (c) 2006 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel [J].
Atzeni, S .
PHYSICS OF PLASMAS, 1999, 6 (08) :3316-3326
[2]   High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion -: art. no. 110702 [J].
Betti, R ;
Zhou, C .
PHYSICS OF PLASMAS, 2005, 12 (11) :1-4
[3]  
DELETTREZ J, DOESF19460118 NAT TE
[4]   Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems [J].
Delettrez, JA ;
Myatt, J ;
Radha, PB ;
Stoeckl, C ;
Skupsky, S ;
Meyerhofer, DD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B791-B798
[5]   Hydrodynamics of conically guided fast ignition targets [J].
Hatchett, SP ;
Clark, D ;
Tabak, M ;
Turner, RE ;
Stoeckl, C ;
Stephens, RB ;
Shiraga, H ;
Tanaka, K .
FUSION SCIENCE AND TECHNOLOGY, 2006, 49 (03) :327-341
[6]   Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition [J].
Kodama, R ;
Norreys, PA ;
Mima, K ;
Dangor, AE ;
Evans, RG ;
Fujita, H ;
Kitagawa, Y ;
Krushelnick, K ;
Miyakoshi, T ;
Miyanaga, N ;
Norimatsu, T ;
Rose, SJ ;
Shozaki, T ;
Shigemori, K ;
Sunahara, A ;
Tampo, M ;
Tanaka, KA ;
Toyama, Y ;
Yamanaka, Y ;
Zepf, M .
NATURE, 2001, 412 (6849) :798-802
[7]  
LINDL JD, 1998, INERTIAL CONFINEMENT, P459
[8]   Integrated implosion/heating studies for advanced fast ignition [J].
Norreys, PA ;
Lancaster, KL ;
Murphy, CD ;
Habara, H ;
Karsch, S ;
Clarke, RJ ;
Collier, J ;
Heathcote, R ;
Hemandez-Gomez, C ;
Hawkes, S ;
Neely, D ;
Hutchinson, MHR ;
Evans, RG ;
Borghesi, M ;
Romagnani, L ;
Zepf, M ;
Akli, K ;
King, JA ;
Zhang, B ;
Freeman, RR ;
MacKinnon, AJ ;
Hatchett, SP ;
Patel, P ;
Snavely, R ;
Key, MH ;
Nikroo, A ;
Stephens, R ;
Stoeckl, C ;
Tanaka, KA ;
Norimatsu, T ;
Toyama, Y ;
Kodama, R .
PHYSICS OF PLASMAS, 2004, 11 (05) :2746-2753
[9]   Implosion hydrodynamics of fast ignition targets [J].
Stephens, RB ;
Hatchett, SP ;
Tabak, M ;
Stoeckl, C ;
Shiraga, H ;
Fujioka, S ;
Bonino, M ;
Nikroo, A ;
Petrasso, R ;
Sangster, TC ;
Smith, J ;
Tanaka, KA .
PHYSICS OF PLASMAS, 2005, 12 (05)
[10]   Fast ignition: Overview and background [J].
Tabak, M ;
Hinkel, D ;
Atzeni, S ;
Campbell, EM ;
Tanaka, K .
FUSION SCIENCE AND TECHNOLOGY, 2006, 49 (03) :254-277