A primal-dual trust-region algorithm for non-convex nonlinear programming

被引:68
作者
Conn, AR
Gould, NIM
Orban, D
Toint, PL
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA
[2] Rutherford Appleton Lab, Computat Sci & Engn Dept, Chilton, Oxon, England
[3] CERFACS, F-31057 Toulouse 1, France
[4] Fac Univ Notre Dame Paix, B-5000 Namur, Belgium
关键词
D O I
10.1007/s101070050112
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Numerical results are presented for general quadratic programs.
引用
收藏
页码:215 / 249
页数:35
相关论文
共 19 条
[1]  
ANDERSEN ED, 1996, INTERIOR POINT METHO
[2]  
[Anonymous], 1981, PRACTICAL METHODS OP
[3]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[4]  
BYRD RH, 1997, 9705 OTC NW U EV ILL
[5]  
CONN AR, 1999, SIAM J NUMER ANAL, V32, P296
[6]   On the formulation and theory of the Newton interior-point method for nonlinear programming [J].
ElBakry, AS ;
Tapia, RA ;
Tsuchiya, T ;
Zhang, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) :507-541
[7]   Primal-dual interior methods for nonconvex nonlinear programming [J].
Forsgren, A ;
Gill, PE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (04) :1132-1152
[8]  
GAY DM, 1998, P 1996 INT C NONL PR, P31
[9]  
Gill M., 1981, Practical Optimization
[10]   A note on the convergence of barrier algorithms to second-order necessary points [J].
Gould, NIM ;
Toint, PL .
MATHEMATICAL PROGRAMMING, 1999, 85 (02) :433-438