Characterization of stromal progenitor cells enriched by flow cytometry

被引:82
作者
Zohar, R
Sodek, J
McCulloch, CAG
机构
关键词
D O I
10.1182/blood.V90.9.3471
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The progenitors for cells of bone, cartilage, fat, and muscle are thought to be derived from mesenchymal stem cells but despite extensive study of stromal cell differentiation, neither mesenchymal stem cells or the more committed, tissue-specific progenitors have been well-characterized. In this study we used flow cytometry to isolate from fetal rat periosteum a population of small, slowly cycling cells with low cytoplasmic granularity (S cells) that display stem cell characteristics. On plating, S cells exhibited a 90% higher labeling index with [H-3]-thymidine compared to unsorted cells and when grown in culture generated cartilage, adipocyte, and smooth muscle phenotypes, in addition to bone. Only the S-cell population showed extensive self-renewal of cells with osteogenic potential. Electron microscopy showed that S cells have high nuclear:cytoplasmic ratios with large condensed nuclei and a paucity of cytoplasmic organelles. Freshly sorted suspensions of immunocytochemically stained S cells did not express differentiation-associated markers such as type I, II, and III collagens, alkaline phosphatase, or osteopontin, However, after attachment, S cells became immunopositive for collagens I, II, III, osteopontin, and also for the cell surface receptor CD44, which mediates cell attachment to hyaluronan and osteopontin. These studies show that viable osteogenic precursor cells with the stem cell characteristics of self-renewal, high proliferative capacity, and multipotentiality can be enriched from heterogeneous stromal cell populations with simple flow cytometric methods. These cells may be useful for regeneration of stromal tissues. (C) 1997 by The American Society of Hematology.
引用
收藏
页码:3471 / 3481
页数:11
相关论文
共 35 条
[11]  
HALL PA, 1989, DEVELOPMENT, V106, P619
[12]   CHARACTERIZATION OF CELLS WITH OSTEOGENIC POTENTIAL FROM HUMAN MARROW [J].
HAYNESWORTH, SE ;
GOSHIMA, J ;
GOLDBERG, VM ;
CAPLAN, AI .
BONE, 1992, 13 (01) :81-88
[13]  
Le Blond CP, 1976, STEM CELLS RENEWING, P7, DOI DOI 10.1016/B978-0-12-1550509.50008-0
[14]  
Lefkovits I, 1979, LIMITING DILUTION AN
[15]   CONCEPTS OF OSTEOBLAST GROWTH AND DIFFERENTIATION - BASIS FOR MODULATION OF BONE CELL-DEVELOPMENT AND TISSUE FORMATION [J].
LIAN, JB ;
STEIN, GS .
CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE, 1992, 3 (03) :269-305
[16]   SIMULTANEOUS DETECTION OF MULTIPLE BONE-RELATED MESSENGER-RNAS AND PROTEIN EXPRESSION DURING OSTEOBLAST DIFFERENTIATION - POLYMERASE CHAIN-REACTION AND IMMUNOCYTOCHEMICAL STUDIES AT THE SINGLE-CELL LEVEL [J].
LIU, F ;
MALAVAL, L ;
GUPTA, AK ;
AUBIN, JE .
DEVELOPMENTAL BIOLOGY, 1994, 166 (01) :220-234
[17]   REGULATION OF HUMAN BONE-MARROW-DERIVED OSTEOPROGENITOR CELLS BY OSTEOGENIC GROWTH-FACTORS [J].
LONG, MW ;
ROBINSON, JA ;
ASHCRAFT, EA ;
MANN, KG .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 95 (02) :881-887
[18]   THE INFLUENCE OF TYPE-I COLLAGEN ON THE DEVELOPMENT AND MAINTENANCE OF THE OSTEOBLAST PHENOTYPE IN PRIMARY AND PASSAGED RAT CALVARIAL OSTEOBLASTS - MODIFICATION OF EXPRESSION OF GENES SUPPORTING CELL-GROWTH, ADHESION, AND EXTRACELLULAR-MATRIX MINERALIZATION [J].
LYNCH, MP ;
STEIN, JL ;
STEIN, GS ;
LIAN, JB .
EXPERIMENTAL CELL RESEARCH, 1995, 216 (01) :35-45
[20]   DEXAMETHASONE INDUCES PROLIFERATION AND TERMINAL DIFFERENTIATION OF OSTEOGENIC CELLS IN TISSUE-CULTURE [J].
MCCULLOCH, CAG ;
TENENBAUM, HC .
ANATOMICAL RECORD, 1986, 215 (04) :397-402