Genetic algorithms and support vector machines for time series classification

被引:55
作者
Eads, D [1 ]
Hill, D [1 ]
Davis, S [1 ]
Perkins, S [1 ]
Ma, JS [1 ]
Porter, R [1 ]
Theiler, J [1 ]
机构
[1] Los Alamos Natl Lab, Nonproliferat & Int Secur Div, Los Alamos, NM 87545 USA
来源
APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION V | 2002年 / 4787卷
关键词
time series classification; genetic algorithm; genetic programming; support vector machines; feature selection; lightning; tornado; n-fold cross validation;
D O I
10.1117/12.453526
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an algorithm for classifying time series data. Since our initial application is for lightning data, we call the algorithm Zeus. Zeus is a hybrid algorithm that employs evolutionary computation for feature extraction, and a support vector machine for the final "backend" classification. Support vector machines have a reputation for classifying in high-dimensional spaces without overfitting, so the utility of reducing dimensionality with an intermediate feature selection step has been questioned. We address this question by testing Zeus on a lightning classification task using data acquired from the Fast On-orbit Recording of Transient Events (FORTE) satellite.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 18 条
[11]   Comparison of GENIE and conventional supervised classifiers for multispectral image feature extraction [J].
Harvey, NR ;
Theiler, J ;
Brumby, SP ;
Perkins, S ;
Szymanski, JJ ;
Bloch, JJ ;
Porter, RB ;
Galassi, M ;
Young, AC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (02) :393-404
[12]  
Koza JR, 1992, Genetic programming
[13]  
MOORE K, 1997, P SPIE, V2492
[14]  
PERKINS S, 2001, P SPIE, V4381
[15]  
SZYMANSKI JP, 2002, P SPIE, V4725
[16]  
TAY EH, 2001, INTELL DATA ANAL, V5, P191
[17]   Evolving retrieval algorithms with a genetic programming scheme [J].
Theiler, J ;
Harvey, NR ;
Brumby, SP ;
Szymanski, JJ ;
Alferink, S ;
Perkins, S ;
Porter, R ;
Bloch, JJ .
IMAGING SPECTROMETRY V, 1999, 3753 :416-425
[18]  
Vapnik V, 1999, NATURE STAT LEARNING