Nanoparticle concentration profile in polymer-based solar cells

被引:159
作者
Kiel, Jonathan W. [1 ,2 ]
Kirby, Brian J. [3 ]
Majkrzak, Charles F. [3 ]
Maranville, Brian B. [3 ]
Mackay, Michael E. [1 ]
机构
[1] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[2] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[3] Natl Inst Stand & Technol, Ctr Neutron Scattering, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
FULLERENE DERIVATIVES; ELECTRON-MICROSCOPY; EXCITON DIFFUSION; PHASE; MORPHOLOGY; POLY(3-HEXYLTHIOPHENE); SOLUBILITY; ORGANIZATION; BLENDS;
D O I
10.1039/b920979d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-based solar cell performance is dictated by nanoscale structures since the active layer suffers from extremely short exciton diffusion lengths. To understand the structures' effect on cell performance we use neutron reflectivity to investigate the thin film morphology containing a 1 : 1 by weight blend of [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) nanoparticles and poly(3-hexylthiophene) (P3HT). Neutron reflectivity is uniquely suited to this system due to the large scattering length density contrast between the two components, other techniques do not have this contrast. Here we find a higher PCBM concentration at the substrate and near, but not at, the air interface. Annealing the active layer shows a qualitatively similar profile with slightly different interfacial concentrations. Regardless, it is clear the resulting morphology is not optimal for device performance as we show for working solar cells.
引用
收藏
页码:641 / 646
页数:6
相关论文
共 50 条
[1]   Applicability of X-ray reflectometry to studies of polymer solar cell degradation [J].
Andreasen, Jens Wenzel ;
Gevorgyan, Suren A. ;
Schleputz, Christian M. ;
Krebs, Frederik Christian .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (07) :793-798
[2]   Statistical Analysis of Phase-Inversion Neutron Specular Reflectivity [J].
Berk, N. F. ;
Majkrzak, C. F. .
LANGMUIR, 2009, 25 (07) :4132-4144
[3]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[4]  
2-A
[5]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[6]   Conjugated polymer photovoltaic cells [J].
Coakley, KM ;
McGehee, MD .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4533-4542
[7]   Ellipsometric studies on thin film CuPC: C60 blends for solar cell applications [J].
Datta, Debjit ;
Tripathi, Vibha ;
Gogoi, Pranjal ;
Banerjee, Suman ;
Kumar, Satyendra .
THIN SOLID FILMS, 2008, 516 (20) :7237-7240
[8]   Modelling the short-circuit current of polymer bulk heterojunction solar cells [J].
Geens, W ;
Martens, T ;
Poortmans, J ;
Aernouts, T ;
Manca, J ;
Lutsen, L ;
Heremans, P ;
Borghs, S ;
Mertens, R ;
Vanderzande, D .
THIN SOLID FILMS, 2004, 451 :498-502
[9]   Substrate-dependent interface composition and charge transport in films for organic photovoltaics [J].
Germack, David S. ;
Chan, Calvin K. ;
Hamadani, Behrang H. ;
Richter, Lee J. ;
Fischer, Daniel A. ;
Gundlach, David J. ;
DeLongchamp, Dean M. .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[10]   Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures [J].
Gupta, S ;
Zhang, QL ;
Emrick, T ;
Balazs, AC ;
Russell, TP .
NATURE MATERIALS, 2006, 5 (03) :229-233