Detailing regulatory networks through large scale data integration

被引:48
作者
Huttenhower, Curtis [1 ,2 ]
Mutungu, K. Tsheko [1 ]
Indik, Natasha [1 ]
Yang, Woongcheol [1 ]
Schroeder, Mark [2 ]
Forman, Joshua J. [3 ]
Troyanskaya, Olga G. [1 ,2 ]
Coller, Hilary A. [3 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] Princeton Univ, Carl Icahn Lab, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Princeton Univ, Lewis Thomas Lab, Dept Mol Biol, Princeton, NJ 08544 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
FUNCTIONAL GENOMIC DATA; FACTOR-BINDING SITES; GENE-EXPRESSION DATA; ESCHERICHIA-COLI; TRANSCRIPTION; MODULES; SEQUENCE; YEAST; PROMOTERS; DISCOVERY;
D O I
10.1093/bioinformatics/btp588
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Much of a cell's regulatory response to changing environments occurs at the transcriptional level. Particularly in higher organisms, transcription factors (TFs), microRNAs and epigenetic modifications can combine to form a complex regulatory network. Part of this system can be modeled as a collection of regulatory modules: co-regulated genes, the conditions under which they are co-regulated and sequence-level regulatory motifs. Results: We present the Combinatorial Algorithm for Expression and Sequence-based Cluster Extraction (COALESCE) system for regulatory module prediction. The algorithm is efficient enough to discover expression biclusters and putative regulatory motifs in metazoan genomes (>20 000 genes) and very large microarray compendia (>10 000 conditions). Using Bayesian data integration, it can also include diverse supporting data types such as evolutionary conservation or nucleosome placement. We validate its performance using a functional evaluation of co-clustered genes, known yeast and Escherichea coli TF targets, synthetic data and various metazoan data compendia. In all cases, COALESCE performs as well or better than current biclustering and motif prediction tools, with high accuracy in functional and TF/target assignments and zero false positives on synthetic data. COALESCE provides an efficient and flexible platform within which large, diverse data collections can be integrated to predict metazoan regulatory networks.
引用
收藏
页码:3267 / 3274
页数:8
相关论文
共 38 条
[21]   Transcriptional regulatory elements in the human genome [J].
Maston, Glenn A. ;
Evans, Sara K. ;
Green, Michael R. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2006, 7 :29-59
[22]   Finding function: evaluation methods for functional genomic data [J].
Myers, Chad L. ;
Barrett, Daniel R. ;
Hibbs, Matthew A. ;
Huttenhower, Curtis ;
Troyanskaya, Olga G. .
BMC GENOMICS, 2006, 7 (1)
[23]   Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes [J].
Pavesi, G ;
Mereghetti, P ;
Mauri, G ;
Pesole, G .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W199-W203
[24]   Epigenetic reprogramming in mammalian development [J].
Reik, W ;
Dean, W ;
Walter, J .
SCIENCE, 2001, 293 (5532) :1089-1093
[25]   Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks [J].
Reiss, David J. ;
Baliga, Nitin S. ;
Bonneau, Richard .
BMC BIOINFORMATICS, 2006, 7 (1)
[26]   Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation [J].
Roth, FP ;
Hughes, JD ;
Estep, PW ;
Church, GM .
NATURE BIOTECHNOLOGY, 1998, 16 (10) :939-945
[27]   Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs [J].
Ruby, J. Graham ;
Stark, Alexander ;
Johnston, Wendy K. ;
Kellis, Manolis ;
Bartel, David P. ;
Lai, Eric C. .
GENOME RESEARCH, 2007, 17 (12) :1850-1864
[28]   Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data [J].
Segal, E ;
Shapira, M ;
Regev, A ;
Pe'er, D ;
Botstein, D ;
Koller, D ;
Friedman, N .
NATURE GENETICS, 2003, 34 (02) :166-176
[29]   Core promoters: active contributors to combinatorial gene regulation [J].
Smale, ST .
GENES & DEVELOPMENT, 2001, 15 (19) :2503-2508
[30]   Relative impact of nucleotide and copy number variation on gene expression phenotypes [J].
Stranger, Barbara E. ;
Forrest, Matthew S. ;
Dunning, Mark ;
Ingle, Catherine E. ;
Beazley, Claude ;
Thorne, Natalie ;
Redon, Richard ;
Bird, Christine P. ;
de Grassi, Anna ;
Lee, Charles ;
Tyler-Smith, Chris ;
Carter, Nigel ;
Scherer, Stephen W. ;
Tavare, Simon ;
Deloukas, Panagiotis ;
Hurles, Matthew E. ;
Dermitzakis, Emmanouil T. .
SCIENCE, 2007, 315 (5813) :848-853