Three-periodic nets and tilings: regular and quasiregular nets

被引:404
作者
Friedrichs, OD
O'Keeffe, M [1 ]
Yaghi, OM
机构
[1] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA
[2] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2003年 / 59卷
关键词
D O I
10.1107/S0108767302018494
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Regular nets are defined as those with symmetry that requires the coordination figure to be a regular polygon or polyhedron. It is shown that this definition leads to five regular 3-periodic nets. There is also one quasiregular net with a quasiregular coordination figure. The natural tiling of a net and its associated essential rings are also defined, and it is shown that the natural tilings of the regular nets have the property that there is just one kind of vertex, one kind of edge, one kind of ring and one kind of tile, i.e. transitivity 1111. The quasiregular net has two kinds of natural tile and transitivity 1112.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 40 条
  • [31] OKEEFFE M, 1995, ACTA CRYSTALLOGR A, V51, P916, DOI 10.1107/S0108767395007744
  • [32] UNINODAL 4-CONNECTED 3D NETS .2. NETS WITH 3-RINGS
    OKEEFFE, M
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1992, 48 : 670 - 673
  • [33] DENSE AND RARE 4-CONNECTED NETS
    OKEEFFE, M
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1991, 196 (1-4): : 21 - 37
  • [34] OKEEFFE M, 1996, CRYSTAL STRUCTURES, V1
  • [35] Olson D.H., 2001, ATLAS ZEOLITE FRAMEW
  • [36] Pearce Peter., 1978, STRUCTURE NATURE IS
  • [37] TOPOCHEMISTRY OF ZEOLITES AND RELATED MATERIALS .1. TOPOLOGY AND GEOMETRY
    SMITH, JV
    [J]. CHEMICAL REVIEWS, 1988, 88 (01) : 149 - 182
  • [38] Enumeration of periodic tetrahedral frameworks
    Treacy, MMJ
    Randall, KH
    Rao, S
    Perry, JA
    Chadi, DJ
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1997, 212 (11): : 768 - 791
  • [39] Wells A.F, 1977, Three dimensional nets and polyhedra
  • [40] WELLS AF, 1979, FURTHER STUDIES 3 DI, V8