Integral geometry of tame sets

被引:44
作者
Bröcker, L [1 ]
Kuppe, M [1 ]
机构
[1] Univ Munster, Inst Math, D-48149 Munster, Germany
关键词
integral geometry; tame stratifications;
D O I
10.1023/A:1005248711077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Curvature measures on certain tame Whitney-stratified sets are defined as coefficients of modified volume-growth polynomials. Stratified Morse theory yields alternative descriptions of these curvature measures for tame (possibly highly singular) sets. From this we obtain a generalized Gauss-Bonnet formula and various kinematic formulas. Finally, for O-minimal sets it is shown that curvature measures only depend on the inner metric.
引用
收藏
页码:285 / 323
页数:39
相关论文
共 32 条
[1]   The Gauss-Bonnet theorem for Riemannian polyhedra [J].
Allendoerfer, Carl B. ;
Weil, Andre .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 53 (1-3) :101-129
[2]   The Euler number of a Riemann manifold [J].
Allendoerfer, CB .
AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 :243-248
[3]  
[Anonymous], VORLESUNGEN INTEGRAL
[4]  
[Anonymous], 1957, VORLESUNGEN INHALT O
[5]  
Banchoff T. F., 1967, J DIFFER GEOM, V1, P245, DOI 10.4310/jdg/1214428092
[6]   ON THE CURVATURE OF PIECEWISE FLAT SPACES [J].
CHEEGER, J ;
MULLER, W ;
SCHRADER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) :405-454
[7]   KINEMATIC AND TUBE FORMULAS FOR PIECEWISE LINEAR-SPACES [J].
CHEEGER, J ;
MULLER, W ;
SCHRADER, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (04) :737-754
[8]  
CHERN SS, 1966, J MATH MECH, V16, P101
[9]   A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds [J].
Chern, SS .
ANNALS OF MATHEMATICS, 1944, 45 :747-752
[10]  
Federer H., 1969, GEOMETRIC MEASURE TH