Integral geometry of tame sets

被引:44
作者
Bröcker, L [1 ]
Kuppe, M [1 ]
机构
[1] Univ Munster, Inst Math, D-48149 Munster, Germany
关键词
integral geometry; tame stratifications;
D O I
10.1023/A:1005248711077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Curvature measures on certain tame Whitney-stratified sets are defined as coefficients of modified volume-growth polynomials. Stratified Morse theory yields alternative descriptions of these curvature measures for tame (possibly highly singular) sets. From this we obtain a generalized Gauss-Bonnet formula and various kinematic formulas. Finally, for O-minimal sets it is shown that curvature measures only depend on the inner metric.
引用
收藏
页码:285 / 323
页数:39
相关论文
共 32 条
[11]  
Federer H., 1959, Trans. Amer. Math. Soc., V93, P418, DOI [10.1090/S0002-9947-1959-0110078-1, DOI 10.1090/S0002-9947-1959-0110078-1, DOI 10.2307/1993504]
[12]  
FERUS D, 1968, LECT NOTES MATH
[13]   CURVATURE MEASURES OF SUBANALYTIC SETS [J].
FU, JHG .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (04) :819-880
[14]  
FU JHG, 1989, J DIFFER GEOM, V30, P619
[15]  
Gilkey P. B., 1984, Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem
[16]  
GORESKY M, 1988, STRATIFIED MORSE THE
[17]   On stratified Morse theory [J].
Hamm, HA .
TOPOLOGY, 1999, 38 (02) :427-438
[18]   TOPOLOGICAL PROPERTIES OF SUBANALYTIC SETS [J].
HARDT, RM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 211 (OCT) :57-70
[19]  
MILNOR J, 1969, ANN MATH STUDIES, V51
[20]  
Minkowski H., 1911, GESAMMELTE ABH, V2