Generating partitions for two-dimensional hyperbolic maps

被引:7
作者
Backer, A
Chernov, N
机构
[1] Univ Ulm, Theoret Phys Abt, D-89069 Ulm, Germany
[2] Univ Alabama, Dept Math, Birmingham, AL 35294 USA
关键词
D O I
10.1088/0951-7715/11/1/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of two-dimensional hyperbolic maps (which includes certain billiard systems) we construct finite generating partitions. Thus, trajectories of the map can be labelled uniquely by doubly infinite symbol sequences, where the symbols correspond to the atoms of the partition. It is shown that the corresponding conditions are fulfilled in the case of the cardioid billiard, the stadium billiard (and other Bunimovich billiards), planar dispersing and semidispersing billiards.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 34 条
[31]   ON THE K-PROPERTY OF SOME PLANAR HYPERBOLIC BILLIARDS [J].
SZASZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (03) :595-604
[32]   CODING CHAOTIC BILLIARDS .2. COMPACT BILLIARDS DEFINED ON THE PSEUDOSPHERE [J].
ULLMO, D ;
GIANNONI, MJ .
PHYSICA D, 1995, 84 (3-4) :329-356
[33]   PRINCIPLES FOR THE DESIGN OF BILLIARDS WITH NONVANISHING LYAPUNOV EXPONENTS [J].
WOJTKOWSKI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :391-414
[34]   Symbolic dynamics of the stadium billiard [J].
Zheng, WM .
PHYSICAL REVIEW E, 1997, 56 (02) :1556-1560