Plant peroxisomes, reactive oxygen metabolism and nitric oxide

被引:97
作者
del Río, LA
Corpas, FJ
Sandalio, LM
Palma, JM
Barroso, JB
机构
[1] CSIC, Dept Bioquim Biol Celular & Mol Plantas, Estac Expt Zaidin, E-18080 Granada, Spain
[2] Univ Jaen, Fac Ciencias Expt, Dept Bioquim & Biol Mol, E-23071 Jaen, Spain
关键词
antioxidants; nitric oxide; oxidative stress; peroxisomes; reactive oxygen species; ROS; signalling;
D O I
10.1080/1521654031000094694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plant cells, as in most eukaryotic organisms, peroxisomes are probably the major sites of intracellular H2O2 production, as a result of their essentially oxidative type of metabolism. Like mitochondria and chloroplasts, peroxisomes also produce superoxide radicals (O-2(.-)) and there are, at least, two sites of superoxide generation: one in the organelle matrix, the generating system being xanthine oxidase, and another site in the peroxisomal membranes dependent on NAD(P)H. In peroxisomal membranes, three integral polypeptides (PMPs) with molecular masses of 18, 29, and 32 kDa have been shown to generate O-2(.-) radicals. Besides catalase, several antioxidative systems have been demonstrated in plant peroxisomes, including different superoxide dismutases, the four enzymes of the ascorbate-glutathione cycle plus ascorbate and glutathione, and three NADP-dependent dehydrogenases. A CuZn-SOD and two Mn-SODs have been purified and characterized from different types of plant peroxisomes. The presence of the enzyme nitric oxide synthase (NOS) and its reaction product, nitric oxide (NO.), has been recently demonstrated in plant peroxisomes. Different experimental evidence has suggested that peroxisomes have a ROS-mediated cellular function in leaf senescence and in stress situations induced by xenobiotics and heavy metals. Peroxisomes could also have a role in plant cells as a source of signal molecules like NO., O-2(.-) radicals, H2O2, and possibly S-nitrosoglutathione (GSNO). It seems reasonable to think that a signal molecule-producing function similar to that postulated for plant peroxisomes could also be performed by human, animal and yeast peroxisomes, where research on oxy radicals, antioxidants and nitric oxide is less advanced than in plant peroxisomes.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 58 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]  
Baker A, 2002, PLANT PEROXISOMES BI
[3]   Localization of nitric-oxide synthase in plant peroxisomes [J].
Barroso, JB ;
Corpas, FJ ;
Carreras, A ;
Sandalio, LM ;
Valderrama, R ;
Palma, JM ;
Lupiáñez, JA ;
del Río, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36729-36733
[4]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[5]   ASCORBATE FREE-RADICAL REDUCTION BY GLYOXYSOMAL MEMBRANES [J].
BOWDITCH, MI ;
DONALDSON, RP .
PLANT PHYSIOLOGY, 1990, 94 (02) :531-537
[6]  
BOWLER C, 1994, CRIT REV PLANT SCI, V13, P199, DOI 10.1080/713608062
[7]  
COOPER TG, 1969, J BIOL CHEM, V244, P3514
[8]  
Corpas FJ, 1998, BIOCHEM J, V330, P777
[9]   Peroxisomal NADP-dependent isocitrate dehydrogenase.: Characterization and activity regulation during natural senescence [J].
Corpas, FJ ;
Barroso, JB ;
Sandalio, LM ;
Palma, JM ;
Lupiáñez, JA ;
del Río, LA .
PLANT PHYSIOLOGY, 1999, 121 (03) :921-928
[10]  
CORPAS FJ, 1993, EUR J CELL BIOL, V61, P81