Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment

被引:148
作者
Baas, BJ
Denisov, IG
Sliger, SG [1 ]
机构
[1] Univ Illinois, Coll Med, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[4] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
关键词
cytochrome P450 monooxygenases; homotropic cooperativity; membrane scaffold protein; nanodiscs; small angle X-ray scattering;
D O I
10.1016/j.abb.2004.07.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 228
页数:11
相关论文
共 63 条