Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states

被引:79
作者
Choi, YM
Lee, DS
Czerw, R [1 ]
Chiu, PW
Grobert, N
Terrones, M
Reyes-Reyes, M
Terrones, H
Charlier, JC
Ajayan, PM
Roth, S
Carroll, DL
Park, YW
机构
[1] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[2] Seoul Natl Univ, Dept Phys, Seoul, South Korea
[3] Seoul Natl Univ, Condensed Matter Res Inst, Seoul, South Korea
[4] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[5] Univ Sussex, Nanosci & Nanotechnol Ctr, CPES, Brighton, E Sussex, England
[6] IPIC&T, Adv Mat Dept, San Luis Potosi 78210, Mexico
[7] Catholic Univ Louvain, Unite Phys Chim & Phys Mat, B-1348 Louvain, Belgium
[8] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY USA
关键词
D O I
10.1021/nl034161n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature dependent thermoelectric power (TEP) of boron- and nitrogen-doped multiwalled carbon nanotube mats has been measured showing that such dopants can be used to modify the majority conduction from p-type to n-type. The TEP of boron-doped nanotubes is positive, indicating hole-like carriers. In contrast, the nitrogen doped material exhibits negative TEP over the same temperature range, suggesting electron-like conduction. Therefore, the TEP distinct nonlinearities are primarily due to the formation of donor and acceptor states in the B- and N-doped materials. The sharply varying density of states used in our model can be directly correlated to the scanning tunneling spectroscopy studies of these materials.
引用
收藏
页码:839 / 842
页数:4
相关论文
共 21 条
[1]   Thermoelectric power of aligned and randomly oriented carbon nanotubes [J].
Baxendale, M ;
Lim, KG ;
Amaratunga, GAJ .
PHYSICAL REVIEW B, 2000, 61 (19) :12705-12708
[2]   Boron-mediated growth of long helicity-selected carbon nanotubes [J].
Blase, X ;
Charlier, JC ;
De Vita, A ;
Car, R ;
Redlich, P ;
Terrones, M ;
Hsu, WK ;
Terrones, H ;
Carroll, DL ;
Ajayan, PM .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5078-5081
[3]   Is the intrinsic thermoelectric power of carbon nanotubes positive? [J].
Bradley, K ;
Jhi, SH ;
Collins, PG ;
Hone, J ;
Cohen, ML ;
Louie, SG ;
Zettl, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (20) :4361-4364
[4]   Effects of nanodomain formation on the electronic structure of doped carbon nanotubes [J].
Carroll, DL ;
Redlich, P ;
Blase, X ;
Charlier, JC ;
Curran, S ;
Ajayan, PM ;
Roth, S ;
Ruhle, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (11) :2332-2335
[5]   Identification of electron donor states in N-doped carbon nanotubes [J].
Czerw, R ;
Terrones, M ;
Charlier, JC ;
Blase, X ;
Foley, B ;
Kamalakaran, R ;
Grobert, N ;
Terrones, H ;
Tekleab, D ;
Ajayan, PM ;
Blau, W ;
Rühle, M ;
Carroll, DL .
NANO LETTERS, 2001, 1 (09) :457-460
[6]   Carbon nanotubes as molecular quantum wires [J].
Dekker, C .
PHYSICS TODAY, 1999, 52 (05) :22-28
[7]  
DUGDALE JS, 1997, ELECT PROPERTIES MET
[8]   LARGE-SCALE SYNTHESIS OF CARBON NANOTUBES [J].
EBBESEN, TW ;
AJAYAN, PM .
NATURE, 1992, 358 (6383) :220-222
[9]   Transport properties of alkali-metal-doped single-wall carbon nanotubes [J].
Grigorian, L ;
Sumanasekera, GU ;
Loper, AL ;
Fang, S ;
Allen, JL ;
Eklund, PC .
PHYSICAL REVIEW B, 1998, 58 (08) :R4195-R4198
[10]  
Kaiser AB, 1999, SYNTHETIC MET, V103, P2547, DOI 10.1016/S0379-6779(98)00222-7