The molecular basis for cross-reacting material-positive hemophilia A due to missense mutations within the A2-domain of factor VIII

被引:37
作者
Amano, K
Sarkar, R
Pemberton, S
Kemball-Cook, G
Kazazian, HH
Kaufman, RJ
机构
[1] Univ Michigan, Med Ctr, Dept Biol Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Med Ctr, Howard Hughes Med Inst, Ann Arbor, MI 48109 USA
[3] Univ Penn, Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[4] MRC, Ctr Clin Sci, Haemostasis Res Grp, London, England
[5] Tokyo Med Coll, Dept Clin Pathol, Tokyo 160, Japan
关键词
D O I
10.1182/blood.V91.2.538.538_538_548
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Factor VIII (FVIII) is the protein defective in the bleeding disorder hemophilia A. Approximately 5% of hemophilia A patients have normal amounts of a dysfunctional FVIII protein and are termed cross-reacting material (CRM)-positive. The majority of genetic alterations that result in CRM-positive hemophilia A are missense mutations within the A2-domain. To determine the mechanistic basis of the genetic defects within the A2-domain for FVIII function we constructed six mutations within the FVIII cDNA that were previously found in five CRM-positive hemophilia A patients (R527W, S558F, I566T, V634A, and V634M) and one CRM-reduced hemophilia A patient (DeltaF652/3). The specific activity for each mutant secreted into the conditioned medium from transiently transfected COS-1 cells correlated with published data for the patients plasma-derived FVIII, confirming the basis of the genetic defect. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of immunoprecipitated FVIII protein radiolabeled in COS-1 cells showed that all CRM-positive mutant proteins were synthesized and secreted into the medium at rates similar to wild-type FVIII. The majority of the DeltaF652/3 mutant was defective in secretion and was degraded within the cell. All mutant FVIII proteins were susceptible to thrombin cleavage, and the A2-domain fragment from the I566T mutant had a reduced mobility because of use of an introduced potential N-linked glycosylation site that was confirmed by N-glycanase digestion. To evaluate interaction of FVIII with factor IXa, we performed an inhibition assay using a synthetic peptide corresponding to FVIII residues 558 to 565, previously shown to be a factor IXa interaction site. The concentration of peptide required for 50% inhibition of FVIII activity (IC50) was reduced for the I566T (800 mu mol/L) and the S558F (960 mu mol/L) mutants compared with wild-type FVIII (> 2,000 mu mol/L). N-glycanase digestion increased I566T mutant FVIII activity and increased its IC50 for the peptide (1,400 mu mol/L). In comparison to S558F, a more conservative mutant (S558A) had a sixfold increased specific activity that also correlated with an increased IC50 for the peptide. These results provided support that the defects in the I566T and S558F FVIII molecules are caused by steric hindrance for interaction with factor IXa. (C) 1998 by The American Society of Hematology.
引用
收藏
页码:538 / 548
页数:11
相关论文
共 39 条
[1]   HEMOPHILIA-A DUE TO MUTATIONS THAT CREATE NEW N-GLYCOSYLATION SITES [J].
ALY, AM ;
HIGUCHI, M ;
KASPER, CK ;
KAZAZIAN, HH ;
ANTONARAKIS, SE ;
HOYER, LW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :4933-4937
[2]  
ARAI M, 1990, BLOOD, V75, P384
[3]   DIRECT CHARACTERIZATION OF FACTOR-VIII IN PLASMA - DETECTION OF A MUTATION ALTERING A THROMBIN CLEAVAGE SITE (ARGININE-372-]HISTIDINE) [J].
ARAI, M ;
INABA, H ;
HIGUCHI, M ;
ANTONARAKIS, SE ;
KAZAZIAN, HH ;
FUJIMAKI, M ;
HOYER, LW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (11) :4277-4281
[4]   THE COAGULATION CASCADE - INITIATION, MAINTENANCE, AND REGULATION [J].
DAVIE, EW ;
FUJIKAWA, K ;
KISIEL, W .
BIOCHEMISTRY, 1991, 30 (43) :10363-10370
[5]   PROTEOLYTIC PROCESSING OF HUMAN FACTOR-VIII - CORRELATION OF SPECIFIC CLEAVAGES BY THROMBIN, FACTOR XA, AND ACTIVATED PROTEIN-C WITH ACTIVATION AND INACTIVATION OF FACTOR-VIII COAGULANT ACTIVITY [J].
EATON, D ;
RODRIGUEZ, H ;
VEHAR, GA .
BIOCHEMISTRY, 1986, 25 (02) :505-512
[6]  
FAY PJ, 1994, J BIOL CHEM, V269, P20522
[7]   Model for the factor VIIIa-dependent decay of the intrinsic factor Xase - Role of subunit dissociation and factors IXa-catalyzed proteolysis [J].
Fay, PJ ;
Beattie, TL ;
Regan, LM ;
OBrien, LM ;
Kaufman, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6027-6032
[8]  
FAY PJ, 1991, J BIOL CHEM, V266, P8957
[9]  
GITSCHIER J, 1988, BLOOD, V72, P1022
[10]   CHARACTERIZATION OF MUTATIONS IN THE FACTOR-VIII GENE BY DIRECT SEQUENCING OF AMPLIFIED GENOMIC DNA [J].
HIGUCHI, M ;
WONG, C ;
KOCHHAN, L ;
OLEK, K ;
ARONIS, S ;
KASPER, CK ;
KAZAZIAN, HH ;
ANTONARAKIS, SE .
GENOMICS, 1990, 6 (01) :65-71