[1] Univ Minnesota, Dept Mech Engn, Dept Civil Engn, St Antony Falls Lab, Minneapolis, MN 55414 USA
来源:
SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014)
|
2014年
/
524卷
基金:
美国国家科学基金会;
关键词:
VISCOUS FLOWS;
D O I:
10.1088/1742-6596/524/1/012091
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
We develop a computational framework for simulating the coupled interaction of complex floating structures with large-scale ocean waves and atmospheric turbulent winds. The near-field approach features a partitioned fluid-structure interaction model (FSI) combining the curvilinear immersed boundary (CURVIB) method of Borazjani and Sotiropoulos (J. Comput. Phys. 2008) and the two-phase flow level set formulation of Kang and Sotiropoulos (Adv. in Water Res. 2012) and is capable of solving complex free-surface flows interacting non-linearly with complex real life floating structures. The near-field solver is coupled with a large-scale wave and wind model based on the two-fluid approach of Yang and Shen (J. Comput. Phys. 2011) which integrates a viscous Navier-Stokes solver with undulatory boundaries for the motion of the air and an efficient potential-flow based wave solver. The large-scale turbulent wind is incorporated from the far-field solver to the near-field solver by feeding into the latter inlet boundary conditions. The wave field is incorporated to the near-field solver by using the pressure-forcing method of Guo and Shen (J. Comput. Phys. 2009) which has been appropriately adapted to the level set method. The algorithm for coupling the two codes has been validated for a variety of wave cases including a broadband spectrum showing excellent agreement when compared to theoretical results. Finally, the capabilities of the numerical framework are demonstrated by carrying out large eddy simulation (LES) of a floating wind turbine interacting with realistic ocean wind and wave conditions.