Semianalytical approach for the Vaidya metric in double-null coordinates

被引:12
作者
Girotto, F
Saa, A
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
[2] Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13083859 Campinas, SP, Brazil
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 08期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1103/PhysRevD.70.084014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reexamine here a problem considered in detail before by Waugh and Lake: the solution of spherically symmetric Einstein's equations with a radial flow of unpolarized radiation (the Vaidya metric) in double-null coordinates. This problem is known to be not analytically solvable; the only known explicit solutions correspond to the constant mass case (Schwarzschild solution in Kruskal-Szekeres form) and the linear and exponential mass functions originally discovered by Waugh and Lake. We present here a semianalytical approach that can be used to discuss some qualitative and quantitative aspects of the Vaidya metric in double-null coordinates for generic mass functions. We present also a new analytical solution corresponding to (1/v)-mass function and discuss some physical examples.
引用
收藏
页数:7
相关论文
共 22 条
[1]   EVAPORATING BLACK-HOLE IN A VAIDYA SPACE-TIME [J].
BIERNACKI, W .
PHYSICAL REVIEW D, 1990, 41 (04) :1356-1357
[2]   TIME FUNCTIONS IN NUMERICAL RELATIVITY - MARGINALLY BOUND DUST COLLAPSE [J].
EARDLEY, DM ;
SMARR, L .
PHYSICAL REVIEW D, 1979, 19 (08) :2239-2259
[3]   ON THE EXTENSION OF VAIDYA AND VAIDYA-REISSNER-NORDSTROM SPACETIMES [J].
FAYOS, F ;
MARTINPRATS, MM ;
SENOVILLA, JMM .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (10) :2565-2576
[4]  
Hawking S. W., 1973, The Large Scale Structure of Space-Time
[5]   ON THE VAIDYA LIMIT OF THE TOLMAN MODEL [J].
HELLABY, C .
PHYSICAL REVIEW D, 1994, 49 (12) :6484-6488
[6]   MODELS OF EVAPORATING BLACK-HOLES .1. [J].
HISCOCK, WA .
PHYSICAL REVIEW D, 1981, 23 (12) :2813-2822
[7]   Wave tails in time-dependent backgrounds [J].
Hod, S .
PHYSICAL REVIEW D, 2002, 66 (02)
[8]   THE INTERACTION OF OUTGOING AND INGOING SPHERICALLY SYMMETRICAL NULL FLUIDS [J].
HOLVORCEM, PR ;
LETELIER, PS ;
WANG, AZ .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (07) :3663-3675
[9]   Stochastic gravity: Theory and applications [J].
Hu B.L. ;
Verdaguer E. .
Living Reviews in Relativity, 2004, 7 (1)
[10]  
Joshi P. S., 1993, GLOBAL ASPECTS GRAVI